

Safe Detector System for Hydrogen Leaks

Robert. A. Lieberman / Manal H. Beshay (PI/PM) Intelligent Optical Systems, Inc. MAY 11, 2011 Project ID # SCS014

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Providing Solutions with Optical Science www.intopsys.com

1

Overview

Timeline

- Start –June 2007
- Finish- November 2011
- 83% Complete

Budget

Current Project Funding: \$184,966 (DOE \$119,997; IOS Share \$64,970)
FY09/10 Project funding: \$1,189,374 (DOE... \$951,500, IOS share...\$237,874)
FY08/09 Project funding: \$1,230,000 (DOE... \$984,000, IOS share... \$246,000)
Funding received in FY07: \$495,000

MYPP Barriers/Targets

- <u>Delivery</u>: Barrier I. Hydrogen
 Leakage and Sensors
- <u>Storage</u>: Barrier H. Balance of Plant (BOP) Components
- Safety: Targets
- (Also: <u>Fuel Cells</u>, <u>Manufacturing</u>, and <u>Tech. Validation</u>)

Partners

- Intelligent Optical Systems, Inc.– Lead
- Dr. Gerald Voecks Advisor
- Mr. Donald Allgrove Market consultant
- NREL- Testing and Validation
- Sandia/LANL Testing and Validation
- Intelligent Energy -- Commercialization

Relevance: Overall Project Goals

- ✓Investigate fully distributed, integrated optic, and optrode sensor
- ✓ Chose initial sensor product and develop hardware and software
- → Demonstrate sensor prototype performance in real-world applications
- → Prepare to manufacture and sell hydrogen sensor products

Technical Objectives:

Overall	 Integrate IOS' proprietary hydrogen indicator chemistry into a complete optoelectronics package with well-defined sensing characteristics and a known end-use market Develop signal processing and user interface software/firmware to assure sensor meets appropriate standards for commercial acceptance
CY10&11	 Select and finalize hydrogen sensor components and outline scalable cost analysis. Finalize sensor data processing algorithms with minimum false alarms.
	◆Fabricate, test, and validate performance of 14 fully packaged prototypes
-	Deploy prototypes at four different field test sites.
	•Collect and analyze real-time test data under various deployment conditions.
	♦Reach end-users through field demonstrations and field trails.

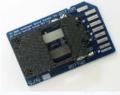
<u>Relevance</u>: IOS Hydrogen Sensors Directly Address Multiple Barriers

- Delivery: Barrier I. Hydrogen Leakage and Sensors (MYPP page 3.2-20: "Low cost hydrogen leak detector sensors are needed")
- Storage: Barrier H. Balance of Plant (BOP) Components (MYPP page 3.3-14: "Light-weight, cost-effective... components are needed...These include... sensors")
- Manufacturing: Barrier F. Low Levels of Quality Control and Inflexible <u>Processes</u> (MYPP page 3.5-11: "Leak detectors... are needed for assembly of fuel cell power plants.")
- <u>Technology Validation: Barrier C. Lack of Hydrogen Refueling</u> <u>Infrastructure Performance and Availability Data (MYPP page 3.6-8: "…the</u> challenge of providing safe systems including low-cost, durable sensors [is an] early market penetration barrier")

<u>Source</u>: "DOE Hydrogen, Fuel Cells and Infrastructure Technology Multiyear Research, Development and Demonstration Plan" (MYPP), 2007 edition. <u>http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/</u>

<u>Relevance</u>: Product Specifications are Driven by Hydrogen Safety Needs

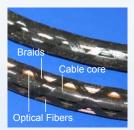
- Sensor Product Specifications:
 - Range: 0 100% H₂
 - Sensitivity : (min) 0.1%H₂ 4% of reading
 - Environment: Ambient air, 5-95%RH, and 0-55°C range.
 - Interference resistant (e.g., moisture, hydrocarbons, oxygen)
- Applications:
 - Safety in distribution/production facilities
 - Leak detection
 - Home/garage safety
 - Vehicular safety



Approach: Optical Waveguide Hydrogen Sensing


Colorimetric Detection

- Immobilize hydrogen-sensitive indicator in optically transparent medium
- Indicator/matrix reversibly changes color in presence of H₂
- Intensity of light transmitted through matrix depends upon hydrogen concentration
- Intrinsically safe, electrically inert, wide temperature range, works in absence of O_2



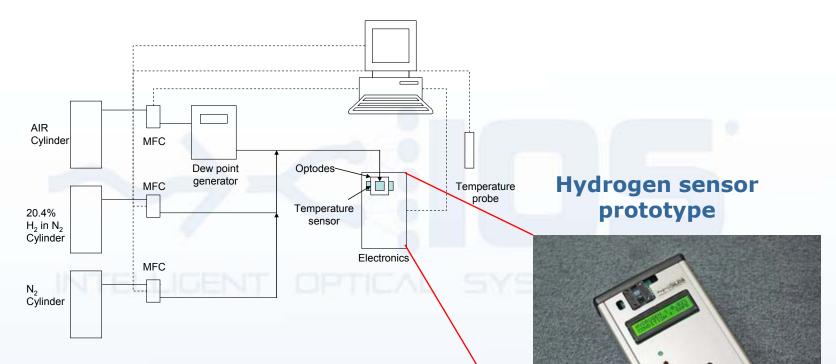
Optical Sensor Formats

Optrode: Indicator immobilized in porous glass. Sensors can be packaged with electronics or remotely addressed through fibers.

Integrated Optic Waveguide: Indicator imbedded in waveguides fabricated on optical chip. Multiple channels improve performance.

Distributed Sensing Fiber: Indicator coated on entire length of sensing fiber. Wide area continuous coverage with a single cable.

Approach: Product Design is Driven by Hydrogen Sensor Market



Providing Solutions with Optical Science www.intopsys.com

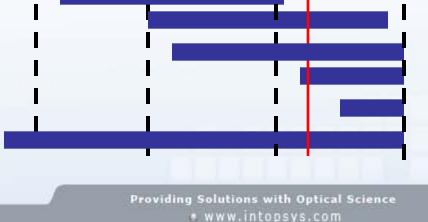
7

Approach: Rigorous Testing to Validate Packaged Hydrogen Sensor Performance

•IOS Sensor Test Facility:

- Computer-controlled gas delivery
- Compatible with NREL facility
- NIST-traceable gas concentrations

Year 4


Current Status

Approach: Project Plan: FY08 – FY11

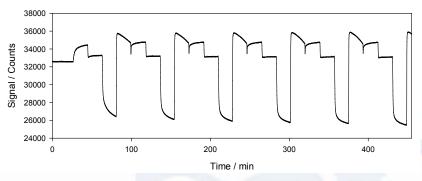
- Identify critical sensor applications that mitigate hydrogen liability issues
- Research and develop reliable hydrogen sensors that fit these applications
- Engineer and commercialize cost-effective hydrogen detection systems
- Perform field testing at multiple beta sites to validate the sensor performance Year 2 Year 3

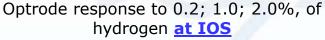
Year 1

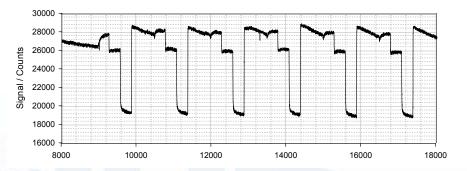
Define sensor chemistry Evaluate various optical sensor matrices *Validate the sensor response/ cross-interference Develop and build the optoelectronic interface *Select and finalize sensor format *Finalize, fabricate, and test optoelectronic system Develop and optimize signal processing algorithms Test complete packaged sensor prototype Field demonstration and validation testing Refine algorithms and release finalized units *Establish commercial market and partnerships

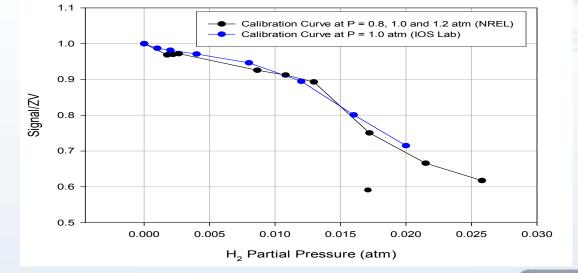
Accomplishment: Hydrogen Safety Sensor Prototype Refined/Ruggedized

Hardware Package Evolution

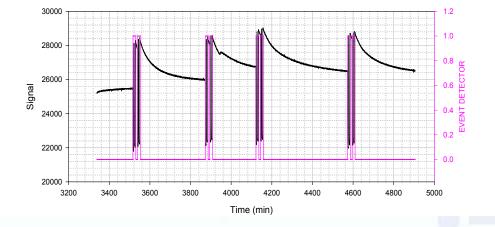

FY10


FY11

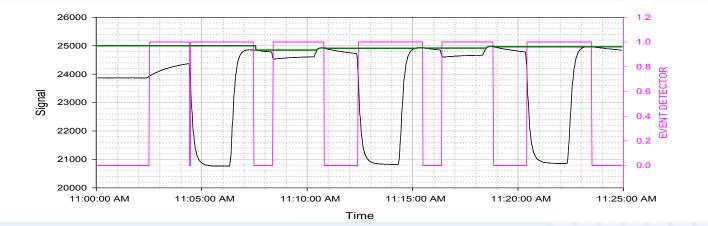

Providing Solutions with Optical Science • www.intopsys.com


Accomplishment: Sensor Repeatability/ Reversibility Validated

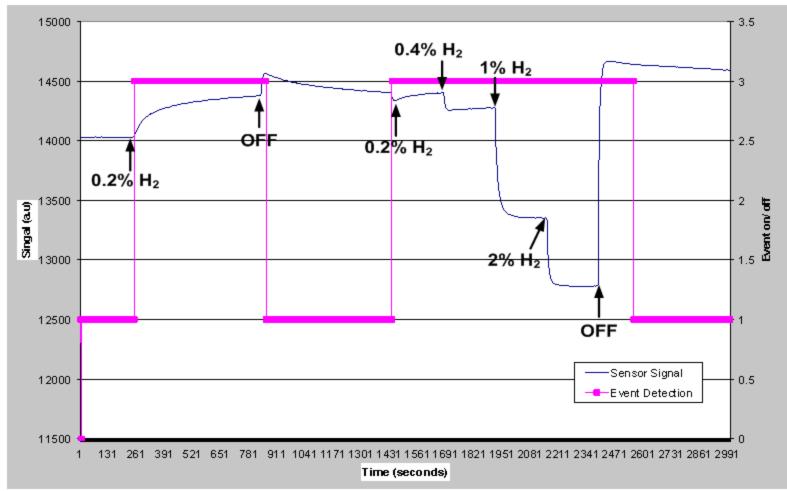
Optrode response to 0.22, 1.08 and 2.15% of hydrogen <u>at NREL</u>



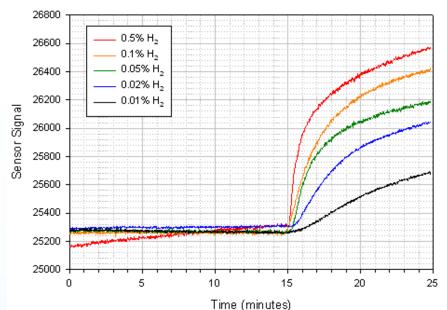
Optical signals selfconsistent within 2%
Optical signals at NREL within 2% of IOS signals

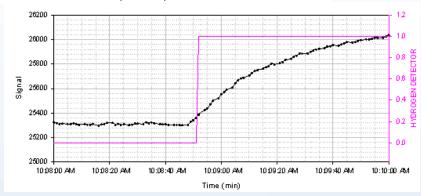

Providing Solutions with Optical Science www.intopsys.com

Accomplishment: Rapid Response Hydrogen Alarm Algorithm Developed



Hydrogen release detection algorithm repeatedly responds to presence of 2% hydrogen in air in less than 5 seconds

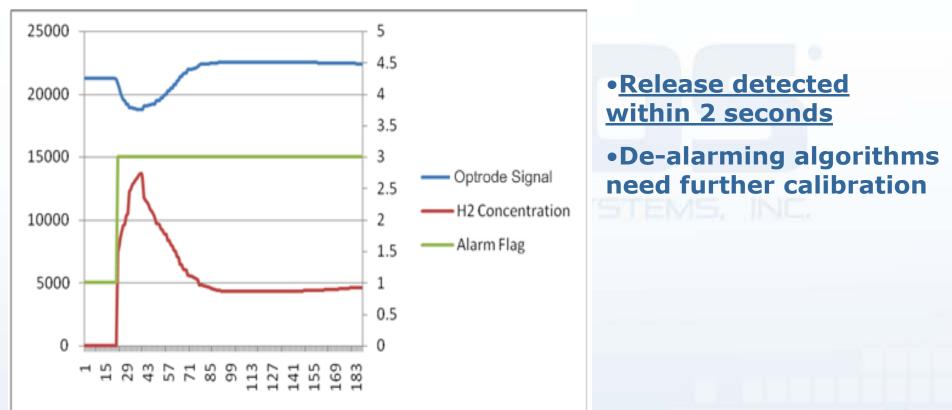



Accomplishment: Hydrogen Sensor Alarm Algorithm Detail

Response Time (T₉₀) at Various Hydrogen Levels

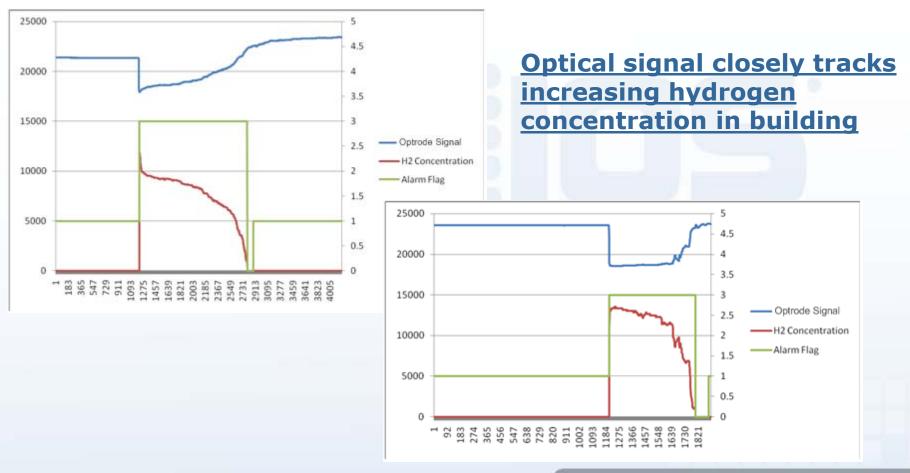
H2 (%)	Detection Time (s)*
4.0	3
2.0	3
1.0	3
0.5	3
0.1	10
0.05	10
0.02	30
0.01	120

*RH = 45%; P = 1 atm.; T = 23 °C; Flow Rate = 1.0 L/min.


Response time < 5 sec. at 10% LFL

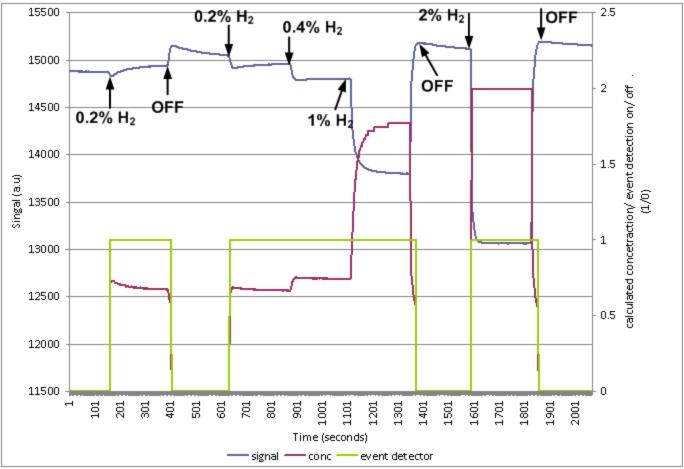
Accomplishment: Rapid Response Demonstrated in Field Tests

("Simulated leak:" Hydrogen release into building at Sandia/Livermore open-air test site.)



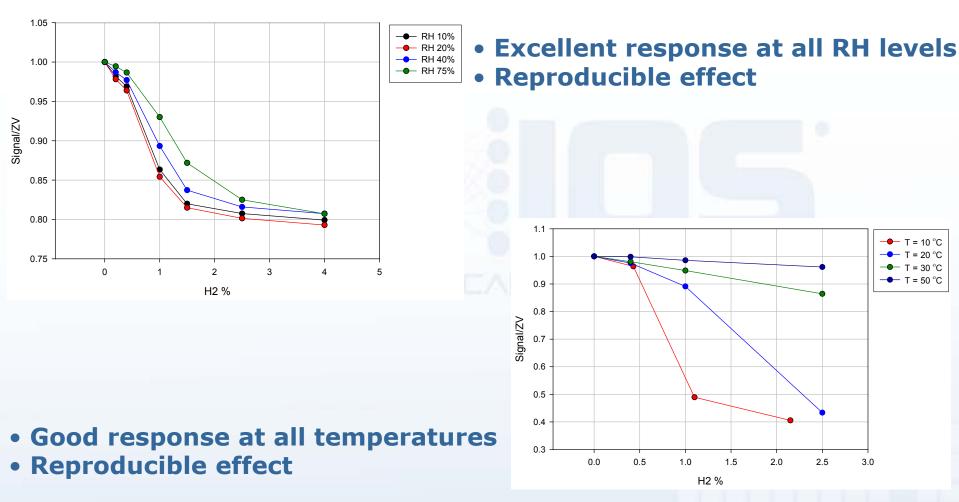
Accomplishment: Field Tests Show Potential for High-Accuracy Concentration Measurement

("Simulated leak:" Hydrogen release into building at Sandia/Livermore open-air test site.)



85%	Task 11: Identify potential cross-contaminants; test and optimize hydrogen sensor elements11.1Fabricate and test optrodes for inclusion in demonstration units.		
Milestone 1	Complete cross-contamination testing of sensor elements and determine whether additional selective permeable membranes and/or scrubbing layers are needed.		
100%	Task 12: Build optoelectronic interface to optrode sensor array modular package		
78%	Task 13: Design and integrate software data processing including internal calibration curves		
	Task 13.1 Define and integrate internal calibration parameters.		
	Task 13.2 Optimize detection and quantification algorithms.		
32%	Task 13.3Run simulation testing on optimized signal processing protocol.		
0270	Task 14: Perform complete test of packaged integrated hydrogen sensor, including sensitivity,		
	response time, selectivity, false alarms, and temperature/humidity characteristics.		
	Task 14.1Conduct long term testing at various environmental conditions.		
	Task 14.2 Analyze and tune algorithms.		
	Task 14.3 Demonstrate the final packaged test unit at NREL.		
Milestone 2	Finish complete testing of the sensor package and validate system performance. Provide		
	report on shelf life of aged and packaged sensor components		
27%	Task 15: Perform hydrogen sensor market study.		
	Task 15.1 Acquire components and material for fabricating units.		
	Task 15.2 Fabricate and test sensor units.		
	Task 15.3Calibrate demonstration units.		
Milestone 3	Complete fabrication, assembly, and testing of 14 units for field demonstration		
	Task 15.4 Deliver test units to each field test site and support tests.		
	Task 15.5 Provide technical support.		
Milestone 4	Task 15.6 Analyze data from test sites.		
	Analyze field testing data and finalize sensor algorithms.		
	Task 15.7 Prepare manufacturing/design recommendations.		
85%	Task 16: Management and reporting		

Future Work: Hydrogen Sensor Concentration Algorithm Being Finalized


Reproducible sensor response requires hysteresis compensation

Providing Solutions with Optical Science www.intopsys.com

Future Work: Humidity/ Temperature Compensation Being Finalized

Providing Solutions with Optical Science • www.intopsys.com

Future Work: Field Tests Begin May 2011

- 14 Complete hardware prototypes fabricated
- Deployment in multiple test sites
- Data collection
 - May-June 2011: Data for final algorithm development
 - July-September 2011:
 - Verification of low false alarms in non-release sites
 - Verification of rapid alarm in controlled-release tests
 - Final characterization of concentration measurement

Collaborations: Acknowledgements

- Gerald Voecks Advisor
 - Fuel cell applications and commercialization
- William Buttner, Robert Burgess, Matthew Post NREL Testing Collaborators
 - Hydrogen sensor testing and validation
- Daniel E. Dedrick, Erik Merilo- Sandia National Lab.
 - Hydrogen sensor field simulation testing
- Intelligent Energy
 - Customer/commercialization partner
- DOE Codes and Standards: We thank Antonio Ruiz and Katie Randolph for their continued support and valuable insights.

Relevance:

Reliable, cost-effective hydrogen sensors are needed for the <u>Delivery</u>, <u>Storage</u>, <u>Manufacturing</u>, <u>Fuel Cell</u>, and <u>Safety</u> Key Activities of the DOE Hydrogen Program. Applications range from garage and passenger compartment safety to leak detection in production facilities and refueling stations.

Approach:

- •High performance, low cost optical sensors will meet projected needs
 - Integrated optic sensors and optrodes are ideal for single-point or multiple-point detection
 - Compact optoelectronic prototype is suitable for hand-held and wall mounting applications

Technical Accomplishments:

- Improved indicator chemistry performance (scalable and reproducible fabrication technique)
- Compensated humidity and temperature effects on sensor signal
- Integrated sensor elements into a compact prototype optoelectronic package
- Developed framework for detection and measurement algorithms
- Tested and validated sensor capabilities at third-party test site (NREL)
- Executed market size and cost analysis for sensor commercialization

Collaborations:

- Consultants/Advisors: Gerald Voecks, Donald C. Allgrove
- Commercialization Partner: Intelligent Energy
- Collaborators: William Buttner, Robert Burgess, and Matthew Post (NREL) Daniel E. Dedrick, Erik Merilo (Sandia National Lab, Field simulation testing)

Back-Up Slides

INTELLIGENT OPTICAL SYSTEMS, INC.

Providing Solutions with Optical Science www.intopsys.com

23

Multiyear Program Plan: Sensor Performance Targets to be achieved by 4Q 2012 • Fuel Cells: MYPP page 3.4-20 (Table 3.4.9)

Hydrogen in fuel processor output	 Measurement range: 25%-100% Operating temperature: 70°-150°C Response time: 0.1-1 sec for 90% response to step change Gas environment: 1-3 atm total pressure, 10-30 mol% water, 30%-75% total H₂, CO₂, N₂ Accuracy: <2% full scale
Hydrogen in ambient air	 Measurement range: full confidence of the ability to detect half of the lower explosion limit Temperature range: -30°C to 80°C Response time: under 1 sec Gas environment: ambient air, 10–98% relative humidity range Lifetime: 10 years Interference resistant

Safety: MYPP page 3.8-7 (Table 3.8.2)

Table 3.8.2. Targets for Hydrogen Safety Sensor R&D

- Measurement Range: 0.1%-10%
- · Operating Temperature: -30 to 80°C
- · Response Time: under one second
- · Accuracy: 5% of full scale
- · Gas environment: ambient air, 10%-98% relative humidity range
- Lifetime: 10 years
- · Interference resistant (e.g., hydrocarbons)

Providing Solutions with Optical Science • www.intopsys.com

Partners – Potential Markets

Hydrogen handling

 Hydrogen production, storage, and testing facilities (Aerovironment, Intelligent Engineering)

Fuel cells

- Stationary fuel cells, Vehicle fuel cells, production and transport (Intelligent Energy, Quantum, Ballard)

Aerospace

 Launching pad fueling, liquid rocket hydrogen sensor (Boeing, NASA)