

System Level Analysis of Hydrogen Storage Options

R. K. Ahluwalia, T. Q. Hua, J. K. Peng, D. Papadias, and R. Kumar

2011 DOE Hydrogen Program Review Washington, DC May 9-13, 2011

Project ID: ST001

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- Project start date: Oct 2009
- Project end date: Sep 2014
- Percent complete: 40%

Budget

- FY11: \$600 K
- FY10: \$700 K

Barriers

- H₂ Storage Barriers Addressed:
 - A: System Weight and Volume
 - B: System Cost
 - C: Efficiency
 - E: Charging/Discharging Rates
 - J: Thermal Management
 - K: Life-Cycle Assessments

Partners/Interactions

- Storage Systems Analysis Working Group (SSAWG)
- Hydrogen Storage Engineering Center of Excellence (HSECoE), NREL, SRNL
- BNL, LANL, Ford
- BMW, LLNL, TIAX, and other industry
- FreedomCAR and Fuel Partnership

Objectives and Relevance

- Conduct independent systems analysis for DOE to gauge the performance of H₂ storage systems
- Provide results to material developers for assessment against performance targets and goals and help them focus on areas requiring improvements
- Provide inputs for independent analysis of costs of on-board systems.
- Identify interface issues and opportunities, and data needs for technology development
- Perform reverse engineering to define material properties needed to meet the system level targets

Approach

- Develop thermodynamic and kinetic models of processes in physical, complex metal hydride, sorbent, and chemical H₂ storage systems
 - Address all aspects of on-board and off-board storage targets, including capacity, charge/discharge rates, emissions, and efficiencies
 - Assess improvements needed in materials properties and system configurations to achieve storage targets
- Select model fidelity to resolve system-level issues
 - On-board system, off-board spent fuel regeneration, reverse engineering
 - Conduct trade-off analyses, and provide fundamental understanding of system/material behavior
 - Calibrate, validate, and evaluate models
- Work closely with DOE technology developers, HSECoE and others in obtaining data
- Participate in SSAWG meetings and communicate modeling, analysis approach, and results to foster consistency among DOE-sponsored analysis activities

Collaborations

Compressed H ₂ (cH2)	Lincoln Composites, Quantum
Cryo-Compressed H ₂ (CcH2)	BMW, LLNL
Metal Hydrides	BNL
Chemical Hydrides	LANL
Sorbents	Ford
GHG Emissions	ANL (GREET)
Off-Board Spent Fuel Regeneration	BNL, LANL, Dow Chemicals
Off-Board Cost	ANL (H2A Group), ANL (HDSAM)
On-Board Cost	TIAX
SSAWG	HSECoE, DOE, LLNL, OEMs, SNL,Tank Manufactures,TIAX

 Argonne develops the storage system configuration, determines performance, identifies and sizes components, and provides this information to TIAX for manufacturing cost estimation

Summary: FY2011 Technical Accomplishments

- Systems analyzed or updated in FY 2011
 - Physical storage: Two-tank cH₂ system, supercritical CcH₂ system
 - Sorption storage: MOF-5 powder and pellets
 - Chemical storage: Ammonia borane in ionic liquid (AB/IL)
 - Metal hydride: Alane slurry
- Systems are at different stages of development and have been analyzed to different levels of sophistication

Results are continually updated

Physical Storage Systems

Cryogenic Hydrogen Storage in MOF-5 Adiabatic Liquid H₂ Refueling

Key System Requirements Storage Medium

- 5.6 kg recoverable H₂
- 5-bar minimum delivery P
- MOF-5 powder and pellets
 Type-3 Containment Vessel
- 2.25 safety factor
- 5,500 P and T cycles
- Toray 2550 MPa CF
- Al 6061-T6 alloy liner Heat Transfer System
- 1.5 kg/min H₂ refueling rate
- 1.6 g/s H₂ min flow rate
- 5 W heat in-leakage

Modeled Adsorption Isotherms: MOF-5 Powder and Pellets

- Sudik et al (2010 Annual AIChE Meeting)
 - MOF-5 (Basolite Z100-H) loose
 powder, 130 kg.m⁻³ bulk density
 - 6 wt% surface excess at 77 K, 55 bar
 - Pelletization causes ~12% loss in excess gravimetric but ~300% gain in volumetric capacity at 77 K
- Sorption fitted to Dubinin-Astakhov (D-A) isotherm, solution thermodynamics for integral enthalpy of adsorption

Optimum Pressures and Temperatures: MOF-5 Pellets

All results for LH₂ refueling

- Optimum P and T for maximum gravimetric capacity are 100-120 atm and ~60 K for powder and 310 kg.m⁻³ bulk density, higher for 510 kg.m⁻³ bulk density
- Optimum T lower than the T at which recoverable excess uptake is maximum
- System volumetric capacity increases with P for 130-310 kg.m⁻³ bulk densities, but does not reach the 40-g.L⁻¹ target

Discharge Dynamics: MOF-5 Powder and Pellets

All results for LH₂ refueling

- Required bed permeability for 1 psi in-bed pressure drop and 20 charge and discharge tubes: $10^{-14} - 10^{-13} \text{ m}^2$
 - Initial measurement: $5.4 \times 10^{-13} \text{ m}^2$ for 360 kg.m⁻³ density pellet
- Required conductivity for 10 U tubes: 0.04 0.5 W.m⁻¹.K⁻¹
 - Measured conductivity for powder and pellets: 0.088 W.m⁻¹K⁻¹
 - Measured conductivity for 500 kg.m⁻³ pellets with 10 wt% graphite flakes: ~0.6 W.m⁻¹K⁻¹

Dormancy and H₂ Loss: MOF-5 Powder and Pellets

- Dormancy: Function of amount of H₂ stored and P/T at start of the event
 - Minimum dormancy is 6 W.d (1.2 days at 5 W in-leakage rate)
 - Peak H₂ vent rate is 0.3-1.9 g.h⁻¹.kg⁻¹ for 5 W in-leakage rate, 25-100% initially full tank
 - Average loss rate below the 0.05 g.h⁻¹.kg⁻¹ DOE target if the tank less than one-third full
 - No H_2 loss if tank is <15% full, or with minimal daily driving

H₂ Storage using Ammonia Borane in Ionic Liquids

- Volume exchange tank design for storing fresh and spent fuel
- Adiabatic vs. non-adiabatic dehydrogenation reactor
- Buffer hydrogen tank
- Heat transfer system (FCS HT and LT coolants)
- Gas liquid separator (coalescing filter)
- Startup reactor (electrically heated)

Reactor Operating Temperatures

- All results for 100% conversion (2.35 H₂-equiv released)
- Increasing recycle leads to lower peak and higher reactor inlet T
 - Stability of ionic liquid related to peak T; inlet T affects choice of pump materials
- Reactor peak and inlet T are insensitive to LHSV and outlet T
- Low recycle ratio is preferred because pumping power increases nonlinearly with R
- Reactor heat transfer decreases as the outlet T is allowed to rise

AB Stability

- All results obtained with kinetic constants derived using 75-110°C data
 - H₂ loss rate >> 0.05 g/h/kg at <u>></u>50°C ambient temperature,
 15 W.m⁻².K⁻¹ heat transfer coefficient for natural convection
 - Loss rate target met at <30°C ambient temperature (full tank)
 - Loss rate proportionately lower with partially full tank
 - Maximum cumulative loss limited to 1 H₂-equiv

Stationary Loss Rates (AB)

- Stationary rate defined as state at which rates of heat generation and heat loss to the ambient are equal
 - True steady state does not exist because α changes continuously
 - No stationary state at >50°C ambient temperature (full tank)
 - Results consistent with dynamic simulations
 - Desirable activation energy >142 kJ/mol for acceptable loss rates

Preliminary Summary: AB System Analysis

- Product stream recycle is needed to control the reactor peak temperature and AB conversion
- Recycle between 0.6 and 0.95 for complete AB conversion
 - Very difficult to control the peak temperature with heat transfer
 - Lower peak temperatures with higher recycle, but pumping power increases non-linearly
- The reactor can also be operated adiabatically while controlling peak T and AB conversion
 - The reactor peak temperature can be lower if operated adiabatically but the recycle ratio is high

17

AB Regeneration Using Hydrazine

LANL has developed a one-pot process for regenerating spent AB using hydrazine (N₂H₄) as the limiting reagent in liquid ammonia

- BNH₂ + N₂H₄ \rightarrow BH₃NH₃ + N₂

Currently hydrazine is produced by the Bayer Ketazine or PCUK Peroxide process

Bayer Ketazine process feed materials: Cl₂, NaOH, and NH₃

> PCUK process feed materials: H₂O₂ and NH₃

FCHtool analysis: energy to produce N₂H₄ dominates the overall energy consumed in AB regeneration

H₂ Storage in Alane Slurry: Decomposition Kinetics

- Analyzing new BNL data for micronsized particles in dibutyl ether (slurry with 60-wt% solids)
- Faster kinetics than previous nano-sized dry powder
- Fitted to Avrami-Erofevev equation with n = 4.5, E = 93.1 kJ/mol

Induction time correlated with T

Regeneration of Alane

Three-step process

- Formation of a first tertiary amine alane adduct (TMAA or DMEAA)
- Transamination of TMAA or DMEAA to form triethylamine alane adduct (TEAA)
- Decompose TEAA to recover alane

- FCHtool analysis: 85% thermal efficiency, 73% SMR efficiency
- Molar ratio: ether/AI = 4, TEA/DMEA = 4, TEA/TMAA = 4

Summary and Status

- Results given as single data points, consult references for range, sensitivity and background
- Metrics cover all DOE targets for on-board and off-board storage
- Some results vetted, others for developmental materials and processes
- Completed analyses of multi-tank systems, MOF-5, and AB systems
 - AIH₃ slurry ongoing
 - Reversible metal hydride: 2LiNH₂/MgH₂ and LiNH₂/MgH₂
 - Physical storage systems: CcH₂ storage issues

Performance and Cost Metric	Units	cH2 350-T4	cH2 700-T4	LH2	CcH2	MOF-5	AB	2010 Targets	2015 Targets	Ultimate Targets
Comment		1-Tank	1-Tank			Powder				
Usable Storage Capacity (Nominal)	kg-H ₂	5.6	5.6	5.6	5.6	5.6	5.6			
Usable Storage Capacity (Maximum)	kg-H ₂	5.6	5.6	5.6	6.6	5.6	5.6			
System Gravimetric Capacity	wt%	5.5	5.2	5.6	5.5-9.2	6.5	4.9	4.5	5.5	7.5
System Volumetric Capacity	kg-H ₂ /m ³	17.6	26.3	23.5	41.8-44.7	34.9	49.5	28	40	70
Storage System Cost	\$/kWh	15.5	18.9	TBD	12	TBD	TBD	4	TBD	TBD
Fuel Cost	\$/gge	4.2	4.3	TBD	4.80	4.6	TBD	3-7	2-6	2-3
Cycle Life (1/4 tank to Full)	Cycles	NA	NA	NA	5500	5500	NA	1000	1500	1500
Minimum Delivery Pressure, FC/ICE	bar(abs)	4	4	4	3-4	5	5	5/35	5/35	3/35
System Fill Rate	kg-H ₂ /min	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.5-2	1.2	1.5	2.0
Minimum Dormancy (Full Tank)	W-d	NA	NA	2	4-30	6	6			
H ₂ Loss Rate (Maximum)	g/h/kg-H ₂	NA	NA	8	0.2-1.6	1.9	0.75	0.1	0.05	0.05
WTE Efficiency	%	56.5	54.2	22.3	41.1	41.1	12.0	60	60	60
GHG Emissions (CO ₂ eq)	kg/kg-H ₂	14.0	14.8	TBD	19.7	19.7	62.9			
Ownership Cost	\$/mile	0.13	0.14	TBD	0.12	TBD	TBD			

Future Work

As lead for Storage System Analysis Working Group, continue to work with DOE contractors to model, validate, and analyze various developmental hydrogen storage systems.

Physical Storage

- Multi-tank compressed H₂ tank systems representative of current designs
- Supercritical cryo-compressed storage concepts

Metal Hydrides

- Update of alane slurry storage system analysis (BNL collaboration)
- Regeneration of alane/other off-board regenerable metal hydrides
- Reversible metal-hydride storage system

Sorbent Storage

- Analysis of generic sorbent system with arbitrary heat of adsorption
 Chemical Hydrogen
- On-board system for AB/IL class of materials (LANL collaboration)
- Fuel cycle efficiency of AB regeneration (LANL collaboration)

Supplemental Slides

MOF-5 On-Board Performance: Key Assumptions

	Parameter	Reference Values
Sorbent	MOF-5 (Basolite Z100-H)	Sudik, AIChE Meeting, 2010
	Skeletal density	2030 kg.m ⁻³
	Crystallographic density	610 kg.m ⁻³
	Bulk density	130 kg.m ⁻³ (powder), 310-790 kg.m ⁻³ (pellets)
	Thermal conductivity	0.088 W.m ⁻¹ .K ⁻¹
Insulation	Multi-Layer Vac. Super Insulation	Aluminized Mylar sheets, Dacron spacer
	Layer density	28 cm ⁻¹
	Density	59.3 kg.m ⁻³
	Pressure	10 ⁻⁵ torr
	Effective conductivity	5.2x10 ⁻⁴ W.m ⁻¹ .K ⁻¹
Tank	T700S Carbon Fiber	Toray Carbon Fiber
	Tensile strength	2550 MPa
	Density	1600 kg.m ⁻³
	L/D	3
	Liner	AI 6061-T6 alloy, 5500 PT cycles, 125% NWP
	Shell	3.2-mm thick AI 6061-T6 alloy alloy
Refueling	Adiabatic Refueling with LH ₂	
	LH ₂ pump efficiency	60-70%
	Storage temperature	Function of storage pressure
	Temperature swing	Function of storage pressure and temperature
Discharge	H ₂ Recirculation	
	Temperature	273 K
	Recirculation rate	TBD
Balance of	Miscellaneous weight	16 kg
System	Miscellaneous volume	10 L

Weight and Volume Distribution

- 6.5-wt% gravimetric and 34.9 kg.m⁻³ volumetric capacities with MOF-5 powder at 60-K storage T and 150-atm storage P
 - Medium and liner account for ~50% of the overall weight
 - 69% volumetric efficiency

Weight Distribution

Discharge Dynamics: Temperature and Sorption Fields

- Effect of bed thermal conductivity on temperature and sorption fields after discharge at full flow rate (1.6 g.s⁻¹)
 - MOF-5 powder, storage P: 150 atm, storage T: 60 K

AB/bmimCl as H₂ Carrier

Work at UPenn has shown that 1.1 H₂-equiv are released in 5 min and

2.2 H₂-equiv in 20 min from 50:50 wt% AB/bmimCl at 110°C

	Unit	Value	Comments/Source		
AB					
Molecular weight		30.9			
H ₂ content	wt.%	19.6			
Melting point	°C	110 - 114	E. Mayer, Inorg. Chem., 12, 1954–1955, 1973		
Density	kg/m ³	780			
Thermal stability	°C	90 -110	1^{st} H ₂ -equiv released, >1 h induction period for release at 85°C		
and decomposition		150°C	2 nd H ₂ -equiv released		
		>450°C	3rd H ₂ -equiv released		
ΔH	kJ/mol-H ₂	21	Exothermic reaction		
Solvent: 1-butyl-3-methylimadazolium chloride (bmimCl)					
Molecular weight		174.7			
Melting point	°C	70	BASF		
Flash point	С°	192	BASF		
Density	kg/m ³	1050	at 80°C, BASF		
Viscosity	Pa-s	0.147	at 80°C, BASF		
Specific heat	kJ/kg-K	1.81	at 80°C, BASF		
Thermal stability	°C	?			
50:50 wt% AB/bmim	CI				
H ₂ content	wt.%	9.9	Himmelberger et al, Inorg. Chem., 48, 9883-9889, 2009		
Melting point	°C	NA	Liquid at room temperature		
Density	kg/m ³	NA			
Viscosity	Pa-s	NA	Stirrable liquid at room temperature		
Specific heat	kJ/kg-K	NA			
Thermal stability	°C	NA	Foams once H_2 is released; foam begins to convert to white solid		
and decomposition			after releasing 1 H ₂ -equiv; entire mixture becoms solid after		
			releasing 2 H_2 -equiv; no induction period for H_2 release.		
ΔH	kJ/mol-H ₂	33	Exothermic reaction		

Storage Capacity

- Of all the systems built, Gen3 CcH₂ has the highest demonstrated gravimetric and volumetric capacity
- Alane slurry shows high volumetric capacity but stable 70-wt% slurry not formulated, volume-exchange tank not developed
- On-going studies to find AB/IL formulations that remain liquid under all conditions, volume-exchange tank not developed
- cH₂ model capacities in agreement with Tech Val data

- Diagram to be regarded as a snapshot in time
- Different systems not analyzed to same level of sophistication
- Advanced materials not ready for deployment
- Some component concepts require further development

Consult ANL reports for complete details, assumptions and background

Weight Distribution

- 350-bar cH₂, LH₂ & CcH₂ systems may meet 2015 gravimetric target
- CcH2 system with AI shell approaches the ultimate gravimetric target
- CF is the main contributor to the overall weight in cH₂ systems
- Metal liner is a heavy component in all Type-3 pressure vessels
- Medium weight dominates in metal hydride and chemical H₂ systems

Volume Distribution

- CcH₂ system meets 2015 volumetric target but not ultimate target
- Medium volume significant in all options and, by itself, exceeds the 2015 system target in cH₂ systems
- Insulation volume important in cryogenic systems
- CDS in LCH2 is bulky because of highly endothermic reaction
- BOP in SBH (adiabatic reactor, exothermic release) is bulky because of condensers

Hydrogen Loss During Extended Parking

- 40% of H₂ stored in LH₂ tank vented to ambient in a typical use cycle
- Negligible H₂ loss from insulated cryogenic pressure vessels with some daily driving
- H₂ loss from alane determined by kinetics and ambient temperature, not by heat transfer
- H₂ loss from AB/IL determined by kinetics, ambient temperature, and heat transfer coefficient

Dormancy

- Shorter dormancy in LH₂ system if the fuel tank is partially full
- Longer dormancy in CcH₂ system with partially-full tank, no stranded driver syndrome
- Longer dormancy in cryogenic sorbent systems than CcH₂ because of heat of desorption
- Dormancy definition not meaningful for alane and AB storage

Cost of On-Board Systems at High-Volume Manufacturing

- Cost data from TIAX studies with ANL inputs, 500,000 units/year
- Fiber cost dominates in cH₂ systems, less expensive in cryogenic sorption systems
- Material cost important in sorption systems and in SA system
- Dehydrogenation catalyst cost important in LCH2 system

Efficiency of On-Board Systems

- Venting loss accounts for inefficiency of LH₂ system
- 10-30% H₂ consumed in alane, SA and LCH2 systems to sustain high-temperature endothermic reactions
- ~1% loss in AB system efficiency because of fuel pump, additional FCS coolant and radiator fan power
- DOE target for on-board system efficiency is 90%

Well-to-Tank Efficiency

- 350- and 700-bar cH_2 options have <60% WTT efficiency
- Reversible metal hydrides may have higher WTT efficiency than cH₂
- LCH2 regeneration is exothermic and can reach 60% efficiency
- High uncertainty in alane regeneration efficiency because of vacuum distillation steps and low-grade waste heat requirement
- Options involving cryogenic H_2 have < 41% WTT efficiencies
- Low efficiencies for AB and SBH regeneration

Note: No-go decision was made on hydrolysis of SBH for on-board applications

Well-to-Engine Efficiency

- Only cH₂ and CcH₂ have same WTT and WTE efficiencies
- Sorbent systems have nearly same WTT and WTE efficiencies
- Low WTE efficiencies for exothermic AB and SBH options because of off-board losses in regeneration
- Low WTE efficiencies for cryogenic options because of off-board losses in liquefaction
- WTE efficiencies <50% for endothermic SA and LCH2 options because of on-board losses

Greenhouse Gas Emissions

- Values given in kg of CO₂ equivalent per kg of H₂ delivered to the vehicle or per mile driven
 - 63.4 mpgge assumed fuel economy for 2015 advanced FC vehicle
- As reference, GHG emissions for 2015 mid-size ICE vehicle with 31 mpgge fuel economy is 0.35 kg-CO₂/mile

Refueling Cost

- H2A data for cost of unit operations, natural gas at \$0.22/Nm³
- Liquefaction contributes significantly to the fuel cost in options requiring LH₂
- Regeneration is the main component of fuel cost in SBH option
- No storage option can meet the \$2-3/kg cost target (untaxed)

