

Systems Engineering of Chemical Hydride, Pressure Vessel, and Balance of Plant for On-Board Hydrogen Storage

J. Holladay (P.I.), D. Herling, K. Brooks, K. Simmons, E. Rönnebro, M. Weimar, S. Rassat

DOE Fuel Cell Technology Program Annual Merit Review

Washington, DC May 9-13, 2011 Technology Development Manager: Ned Stetson

U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project ID: ST005

Overview

Timeline

- Start: Feb. 2009
- Project End: Jan. 2014
 - End Phase 1: 2011
 - End Phase 2: 2013
 - End Phase 3: 2014
- Percent complete: 33%

Budget

- \$6.2M Total (PNNL) Program
 - DOE direct funded
 - No cost-share required for National Lab
- FY09: \$600k
- FY10: \$1.5M
- FY11: \$1.2M

United Technologies Research Center

Barriers

- A. System Weight and Volume
- B. System Cost
- C. Efficiency
- D. Durability

Partners

nher of Hevanne Compos

- E. Charging / Discharging Rates
- G. Materials of Construction
- H. Balance of Plant (BOP) Components
- J. Thermal Management
- O. Hydrogen Boil-Off

EV S

S. By-Product/Spent Material Removal

National Renewable

HSM

Pacific No

Energy Laboratory Innovation for Our Energy Future

Relevance: Hydrogen Storage

Impact to FCT Program

- Demonstrate hydrogen storage system that meets DOE 2015 targets for light duty vehicles using chemical hydrogen storage
- Apply materials discoveries from the Materials Centers of Excellence
- Discover/develop engineering solutions to overcome material's deficiencies
- Identify minimal performance for materials to be applicable in engineered H₂ storage systems for light duty vehicles.
- Hydrogen Storage Community at Large
 - Develop and/or advance modeling and simulation tools for the optimum design and engineering of on-board storage systems
 - Functional prototype systems available to OEMs
 - Engineering methodologies, analysis tools, and designs applicable to stationary storage and portable power applications
 - U.S. demonstration of on-board storage to advance state of the art.
 - Identify, develop and validate critical components either for performance, mass, volume, or cost.

Approach:

4

- PNNL's Roles Supporting Engineering Center Structure
 - Technology Area Lead (TAL) for Materials Operating Requirements
 - Coordinate activities as the Technology Team Lead (TTL)
 - Bulk Materials Handling (Transport Phenomena)
 - Pressure Vessels (Enabling Technologies)
 - Manufacturing and Cost Analysis (Performance Analysis)
 - Liaison to VT Program projects and resources
- Technical Objectives of PNNL Scope:
- Chemical Hydrides

 Design chemical hydride H₂ storage system & BOP components Develop system models to predict mass, volume, performance Reduce system volume and mass while optimizing storage capability, fueling and H₂ supply performance Mitigate materials incompatibility issues associated with H₂ embrittlement, corrosion and permeability Demonstrate the performance of economical, compact lightweight vessels for hybridized storage Guide design and technology down selection via cost modeling and
 - manufacturing analysis
 - Perform value engineering of BOP to minimize cost, volume and mass
 - Phased/ gated progressions aligning with HSECoE go/no-go decisions

FY11 Objective

- Chemical Hydride Storage Design
 - Modeling
 - Experimental Validation of models and concepts

Balance of Plant

- BOP library
- Size components (heat exchangers, valves, pumps,...)
- Material Compatibility
- Identify where improvements can be made

Cost Modeling

5

Baseline – very conservative

Pressure Vessel (reviewer section)

- Develop model to assess materials and design options
- Optimize vessel design in terms of cost

Accomplishments: Milestones FY11

Q2 🔵	Task 1	Develop and demonstrate (w/surrogate) on-/off board transport system capable of meeting >40% DOE 2010 target for the storage system fill time rate.
Q1 🔵	Task 1	Identify and complete property validation testing (e.g., density and rheological properties) of surrogate materials for fresh and spent chemical hydrides to be used in on-/off-board transport demonstrations.
Q2 🔵	Task 1	Recommend a preferred solid chemical hydride storage system/transport/reactor concept and rank promising alternate approaches to coincide with the Phase 1 go/no-go decision.
Q2 🔵	Task 2	Complete AB Reactive Auger System Model and Implement into Vehicle Level Model. Provide initial estimate of the System Gravimetric and Volumetric Capacity, On-Board Efficiency, Start Time, and Delivery Temperature.
Q3 🔵	Task 2	Complete development of the Alane System Model and Implement into Vehicle Level Model. Provide initial estimate of the System Gravimetric and Volumetric Capacity, On-Board Efficiency, Start Time, and Delivery Temperature.
Q2 🔵	Task 3	Determine and report hydrogen capacity and bulk kinetics (150-300 ° C), Bulk density (Study of AB/MC effect of MC on volumetric/gravimetric density).
Q4 🔵	Task 3	Measure and report on thermal diffusivity and hydrogen diffusivity.
Q2	Task 3	Determine end state points and in-situ reaction rheological properties for AB/MC.
Q4 🔵	Task 5	Completion of system component "catalog".
Q2	Task 6	Complete pressure vessel design requirements and provide manufacturing and cost information for cost modeling task.
Q4 🔵	Task 6	Determine technical feasibility and design details for metal hydride and cryogenic absorbent vessels.
Q3 🔵	Task 7	Complete Phase I cost model, including definition of assumptions and determination of system component and/or manufacturing costs.
Q2 🔵		Go/No-go assessment of proposed technologies and recommendation to the Center Coordinating Council (CCC) on proceeding.

Accomplishments: Chemical Hydride System Solid Ammonia-Borane: 2010 Targets

Accomplishments: Refueling Feasibility Test Results

- Pneumatic conveyance with LDPE surrogate
- Preliminary, open-ended flow tests, ~22 ft of hose:
 - 14 to 15 kg/min powder (~9 kg) and pellets (~20 kg)
 - >100% of 2010 target 9.2 kg/min (e.g., for 80:20 AB/MC)
- Wedge-shaped section.
 - Fill: pellets, 5.4 6.9 kg/min (60-75% target)
 - Drain: pellets, 4.8 9.2 kg/min (~50-100% target)
 - Fill: UTRC powder 2.5 kg/min (~27% of target)
 - Drain: UTRC powder 4.5 kg/min (~49% of target)

Pellets: 75-100% Target Powder: <30% Target Recommend Pellets

Accomplishments: Chemical Hydride H₂ Storage Models

Accomplishments: Kinetic Model Validation

PCT Testing

AB and AB/MC

PCT data is mg sample

Results

AB foamed
 AB/MC did not foam,

- 2.5g AB or AB/MC
 - Heated from bottom
 - PCT data is mg sample
- Results
 - AB foamed and did not propagate
 AB/MC did not foam, but did propagate

AB Kinetic Models Validated Heat Propagation Observed

Accomplishment: COMSOL Model Aid in Reactor Design

Fixed Bed

• 33" long, 4" ID

•
$$T_{bottom} = 180^{\circ}C$$

•
$$T_{wall} = T_{initial} = 20^{\circ}C$$

Results

- Fast reaction time once
 initiated
- Rate = 16 mm/s
- Incubation Time = 50 sec

Fixed Bed

• 33" long, 4" ID

Results

- Rate = 2 mm/s
- Incubation Time = 50 sec

NATIONAL LABORATORY

Accomplishments: 8 Configurations

slurries, alane slurries and AB/ionic liquids. Fixed bed modeled with AB.

Accomplishments: Integrated System Model

Accomplishments: Reactor Concept Validation

Auger Concept

- Extruder for plastics outfitted for hydrogen generation
- Validate auger concept
- Verify heat transfer to AB at required feed rate
- Measure hydrogen generation vs. AB feed rate

Results- Reactor clogged

Fixed Bed Reactor

- Stainless Steel Tube
- 2.5g AB/MC
- 160° C, 10 bar

Results

- ~After initiation, H₂ fast release
- 2.5 equivalents released
- Some increased stickiness

Accomplishments: Reactor Concept Validation

Auger Concept

re

Μ

Q(

- Extruder for plastics outfitted for hydrogen generation
- Validate auger concept
 - Verify heat transfer to AB at

Fixed Bed Reactor

Stainless Steel Tube

se

2.5 Grams ABMC Powder

- 2.5g AB/MC
- 160° C, 10 bar

Results **Fixed Bed Reactor – Concept Validated!**

Auger Concept – Recommend No-Go

Results- Reactor clogged

Phase II Focus on Fluid Reactors

BOP and Cost Estimate Approach

Partners Provide to PNNL

- System Architects and modelers defined required and predicted:
 - temperatures
 - pressures
 - flow rates

System Schematic

PNNL Provided to Partners

- Balance of plant components
 - Sized components (heat exchangers, valves, pumps...)
 - Identify acceptable materials
- Supplier part numbers
- Specific component cost
- Component library developed

st ATORY

Each Component Needed Exact Detail for Costing from Vendors

Accomplishments: System Mass and Volumes Projected

	Calculated Mass/ Volume	kg H ₂ / System	Fraction of 2010 DOE Goal
Ν	/letal Hydride Sys	stem	
Gravimetric Density	457.5 kg	.0122	27%
Volumetric Density	488.7 L	.0115	41%
AB	MC Fixed Bed Sy	ystem	
Gravimetric Density	155.4	.036	80%
Volumetric Density	236	.0237	85%
	AB IL Fluid Syst	em	
Gravimetric Density	147.85 kg	.0378	82.6%
Volumetric Density	163.3 L	.0344	122%
	Cryo-Sorbent		
Gravimetric Density	145	.0388	86%
Volumetric Density	238	.0236	84%

Baseline Mass and Volume Calculated. Identified Key Areas for Improvement

CENDOE 2010 target = 0.045 kg H₂ /kg, 0.028 kg H₂ / L

NATIONAL LABORATORY

Accomplishments: Detailed Sub-System Analysis: MH Heat Transfer Fluid Loop BOP Example

	Current			Total Mass per	Total Volume per
		Component	Description	component	Component
		Coolant Valve1	isolation valves for oil circulation	7.00	4.54
l		Coolant Fluid	volume	11.23	0
	<	Coolant Pump	oil recirculating pump	26.30	18.6
	Oil BOP	Coolant lines	all coolant-wetted lines	12.00	7.9
Alte	rnative	system Insulation	lines	1.00	5
		Alternative >90% m bower. Working with	hass reduction, but lowe In vendor and partners to	r flow rate an o make it wor	d AC k.
		Catalytic Heater	hydrogen burner (12 kW)	3.8	1.7
		Total		62.33	45.74
		Detailed Su	ub-System Analysis	s Complete	ed

Sensitivity Analysis Shows How Material Characteristics Impact BOP In this case: 54% reduction in gravimetric density 50% reduction in volumetric density

Accomplishments: Cost Estimate

How:

- Vendor estimates from parts list
 - Applied discounts if from distributer
 - Not all vendor estimates in for Cryo-Sorbent systems
- Progress ratios
 - Account for scaling, learning, and OEM requirements
 - Analogy from fuel cell and Quantum tank cost estimates

			Pro	oduction An	nount (\$k)	
		10	1000	10,000	130,000	500,000
Metal Hydride	Total Costs	\$68.5k	\$46.9k	\$22.3k	\$16.5k	\$9.2k
	\$/kWh					\$49.3/kWh
Chem Hydride	Total Costs	\$234k	\$24.7k	\$11.6k	\$6.1k	\$4.8k
	\$/kWh					\$25.6/kWh
Cryo Sorbent	Total Costs					In Progress
	\$/kWh					In Progress

Accomplishments: AB, MH and AX-21^{*} Systems Cost by Percent of Total

* AX-21 systems cost from Tiax report since ours is not yet complete

Collaborative Activities

Hydrogen Storage Engineering Center of Excellence	 Lincoln Composites - study of CF cost and pressure vessel design modeling GM - design of structured media bed for MH Ford - characterization of absorbent materials UQTR - design and materials characterization of carbon absorbent OSU - microarchetecture device concept development and thermodynamic analysis UTRC - develop solutions for H₂ impurities filtering LANL - AB system design and measure H₂ impurities NREL - input for tank to wheels analysis and system cost models SRNL - study AB reactivity and kinetics model development
SSAWG	Participate in group discussions and analysis
Materials 'Reactivity' Program	 Khalil (UTRC) and Anton (SRNL) - understand reactivity properties of AB Van Hassel (UTRC) - study impurities in H₂
Independent Analysis	 TIAX - provide design details for AB refueling cost and feasibility assessment, plus share cost parameters for system cost modeling

Future Work: FY11 – FY12

Chemical Hydride System

- Detailed Design, Engineering and Analysis
 - Expand model to include additional physical properties
 - Sensitivity analysis
 - Viscosity
 - Settling/flocculation
 - Vapor pressure
 - Thermal stability...
- Validate Model Parameters
- Validate Critical Components
- Solid-Liquid Slurry Development
 - Composition
 - Additives

BOP and Cost Analysis

- Value Engineering
 - Minimize mass and volume
 - Work with partners on BOP
 - Work with venders to push limits on components
- Pressure Vessel Engineering
 - Reduce cost, mass
 - Maintain safety
- Materials Compatibility/ Reactivity
 - H₂ wetted material compatibility in components
 - Cost Analysis
 - Complete Cryo-Sorbent
 - Work with partners, venders on reducing cost
 - Update analysis with detailed design

Summary

- Solids and Materials Transport & System Design
 - Demonstrated on-off boarding of a solid material
- Process Modeling & Engineering
 - Completed Simulink and COMSOL models
 - Multiple designs
 - Multiple materials
 - Evaluated chemical hydride storage to predict that they can provide sufficient H₂ for the cold FTP drive cycle and other cycles
- Kinetics & Materials Property Measurements
 - Validated kinetic models with data
 - Validated Fixed Bed Reactor concept
 - Discontinued Auger type reactor
 - Completed propagation tests
 - Begun solid-liquid slurry work

Summary

Balance of Plant and Materials Reactivity & Compatibility

- Completed BOP Library
- Detailed and sized BOP components for 2 Chemical hydride Systems, two Metal Hydride Systems and Cryo-Sorbent Systems
- Identified areas for decreasing mass and volume in BOP
- Identified technology gaps
- Containment & Pressure Vessel Design
 - Developed cryo tank models
 - Projected mass and volume of tanks
 - Enables optimization of tank depending on pressure
- Manufacturing & Cost Analysis
 - Completed cost analysis for metal hydride and chemical hydride systems
 - Projected cost of AX-21 material \$4/kg \$4.2/kg
 - Initiated cost projection for Cryo-Sorbent system

Jamie Holladay – Pacific Northwest National Lab, Principal Investigator Jamie.Holladay@pnl.gov, (509) 371-6692

Don Anton – HSECoE, Director Ned Stetson – DOE EERE, Technology Development Manager

Technical Back-up Slides

Accomplishments: Transport Properties of Chemical Hydrides and a Surrogate

AB and AB/MC powder = "easy flowing" similar to LDPE

Aviabor AB

AB/MC

LDPE

Spent AB/MC Spent AB

est

RATORY

Angle of Repose					
- Value ()	~42	38 - 40	~42	~50	TBD
- Category	"Fair Flowing"	"Fair Flowing"	"Fair Flowing"	"Cohesive"	-
Density (kg/L)					
- Intrinsic	0.74	~0.80	0.92	1.7	TBD
- Bulk	0.19 – 0.30	0.17 – 0.28	0.32 – 0.43	0.07 – 0.11	0.12 – 0.16
Particle Character					
-Size (mm)	0.1 – 2	0.1 – 3	0.1 – 1	most ≤1	most ≤1
-Description	Rnd./Cyl., Irreg.	Rounded, flake	Irregular	Fluffy, porous	Fluffy, porous
		7Y2		1 AN	

LDPE is acceptable surrogate for AB

Accomplishments: DMA Investigation of Structural Properties of AB Fuel Forms

Storage Component Concepts

Adsorbent Vacuum Insulated Cryogenic Tank

The center has a task dedicated to pressure vessels because of their complexity, temperature demands, and pressure extremes NaAlH₄ Metal Hydride Tank

Cryo Tank Mass and Volume Relationship Estimate (Composite ~ 48% mass, Aluminum Liner ~ 52% mass)

With a fixed wall thickness ratio for each pressure, the tank mass for a variety of pressures and volumes can be determined. The stress state in the tank wall is approximately equal for all points in the graph below. L/D ratio of 3 is a close estimate of 2 to 4 in this range of volume and pressure. This set of relationships assumes the liner thickness can be minimized based on the structural demands of the tank. Proportionality does not hold when liner thickness has a specified minimum (3mm,6mm,9mm,etc). Changing ratio of aluminum/composite (e.g., to reduce cost) will change slopes of curves.

Press (Bar)	Volume/ Mass (L/kg)	Mass/ Volume (kg/L)
250	3.35	0.299
200	4.22	0.237
150	5.66	0.177
100	8.56	0.116
50	17.24	0.058

Cryo-Compressed Tank Mass Estimates (kg)

Specified liner thickness compared to ideal liner thickness. Mass of liner plus composite overwrap reported. Excess liner thickness is undesirable mass. High pressures require greater than 3mm liner. Low pressures require so little composite thickness that minimum raised to 3 tows – may be potential for eliminating composite overwrap completely in some cases, but safety factor needs consideration.

250 Bar	ldeal Liner	3mm Liner	6mm Liner	9mm Liner	200 Bar	ldeal Liner	3mm Liner	6mm Liner	9mm Liner
100L	29.5	Х	33.9	41.7	100L	23.4	X	30.1	37.9
150L	44.3	Х	47.0	57.3	150L	35.2	X	41.4	51.4
200L	59.1	Х	59.3	71.8	200L	46.9	X	52.0	63.9
150 Bar	ldeal Liner	3mm Liner	6mm Liner	9mm Liner	100 Bar	ldeal Liner	3mm Liner	6mm Liner	9mm Liner
100L	17.5	18.3	26.3	34.3	100L	11.7*	15.7*	26.0*	36.6*
150L	26.2	Х	35.8	46.1	150L	17.3	20.5*	34.0*	47.8*
200L	34.9	Х	44.7	57.0	200L	23.1	24.8*	41.1*	57.7*

x = Liner must be greater than 3mm to withstand loads.

*= Composite layer raised to minimum 3 tow thicknesses.

Cost Estimating Approach

- Used analogy depending on progress ratios from fuel cell cost estimation and Quantum tank cost estimates
- Used progress ratios to account for scale, learning, and OEM requirements for cost improvement over time
- Obtained estimates from vendors based on indicated parts and materials list
 - Applied discounts if from distributor based on research of markup percentages
 - 30% compounded by level of distributor
 - Most vendors provided estimates to levels required for 10,000 units of production
 - Some vendors provided quotes but noted that the valve priced was NOT certified in the U.S. for automotive purposes
- OSU provide the cost estimate from their software for the Hydrogen Combustor
- Estimate of the heat exchanger prices from a heat exchanger cost and price model
- Dynatek provided the tank price estimate
 - Some could provide more but would not because of the lack of specificity in the estimate basis
 - Eg, methylcellulose comes in many grades from pharmaceutical estimate to industrial, many viscosities and specific gravities.
 - Unwilling to price given differences

