

Chemical Hydride Rate Modeling, Validation, and System Demonstration

LANL Team

T.A. Semelsberger (P.I.), Tony Burrell, Tommy Rockward, Eric Brosha, Jose Tafoya, Gerie Purdy, Tessui Nakagawa, and Ben Davis

> DOE Fuel Cell Technologies Program Annual Merit Review, EERE: Hydrogen, Fuel Cells and Infrastructure Technologies Program Washington, DC June 09-13, 2011 Technology Development Manager : Ned Stetson

This presentation does not contain any proprietary, confidential, or otherwise restricted information

UNCLASSIFIED

Project ID: ST007

LANL Project Overview

<u>Timeline</u>

- Project Start Date: Feb FY09
- Project End Date: FY14
- Percent Complete: 38%

Budget

- •Project End Date: FY14
- Funding:
 - •2009: \$578K
 - •2010: \$712K
 - •2011: \$600K

Project Timeline

Barriers

- Barriers Addressed
 - Efficiency
 - Gravimetric Capacity
 - Volumetric Capacity
 - Durability/Operability
 - *H*₂ Discharging Rates
 Start time to full flow
 Transient Response
 - H₂ Purity
 - Environmental, Health & Safety

Phase 1						Phase 2				Phase 3										
	2009 2010		2011		20	11	2012			2013 2014		14								
Q2	Q3	Q4	Q1	Q2	Q3	Q 4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2

HSTITUTEO

GM

HR

LANL Management Accomplishments/Highlights

Technology Area Team Lead for:

- Chemical Hydrogen Storage Properties: Gathered pertinent thermo-physical properties and identified missing property data for chemical hydrides and identified institution for quantifying necessary data
- Sensors: Developed a first generation fuel gauge sensor that also monitors tank integrity
- System Design Concepts and Integration: Delivered preliminary design concepts
 - Solid-phase chemical hydrogen storage (PNNL developed)
 - Fluid-phase chemical hydrogen storage (LANL developed)
- Chemical Hydrogen Storage Liaison
 - Chemical Hydrogen Storage Researchers
 - Hydrogen Storage Tech Team

- Hydrogen Safety Panel
- Hydrogen Production & Delivery Tech Team
- Chemical Hydrogen Storage System Architect & Fluid-Phase System Designer
 Monitored progress on chemical hydrides technology across the technology areas for needed features to be advanced and to insure needed communication across groups and areas occurs
 - ✓ Assessed system for ECoE Phase 1 to Phase 2 Transition:
 - Assessment performed on solid AB (PNNL system design)
 - Assessment performed on fluid-phase AB (LANL system design)

LANL Engineering Tasks in Support of HSECoE

LANL Engineering Tasks (Presentation Order)

Task 7: Design, Build, and Demonstrate a Subscale Prototype System

Task7a: Design automotive-scale systems Task 7b: Design and build bench-scale validation test bed

- <u>Task 2:</u> Develop Fuel Gauge Sensors for Hydrogen Storage Media (*Ahead of Schedule*)
- Task 6: Identify Hydrogen Impurities and Develop Novel Impurity Mitigation Strategies (*On Schedule*)
- Task 4: Develop Rate Expressions of Hydrogen Release for Chemical Hydrides (On Schedule)
- <u>Task 5:</u> Develop Novel Reactor Designs for Start-up and Transient Operation for Chemical Hydrides (*On Schedule*)
- <u>Task 3:</u> Develop Models of the Aging Characteristics of Hydrogen Storage Materials (*Effort reduced due to funding constraints*)

Task 7a: LANL Fluid Phase System Designs

✓ <u>Relevance</u>:

- Automotive scale fluid-phase chemical hydrogen storage system
- Ultimate Goal of the DOE
- 2015 DOE Targets Addressed: All

✓ Expected Outcomes:

- System level design
- Identified areas requiring novel R&D approaches
- System design for modeling purposes

✓ <u>Task/Approach</u>:

- 7a.1 Design fluid-phase CHS system
- 7a.2 When possible use off-the-shelf BOP components

Fluid-phase AB system down selected into Phase 2

UNCLASSIFIED

Task 7: LANL Fluid Phase System Designs

Unit Operations of Fluid-Phase AB System

- Dehydrogenation Reactor (Transport)
- Gas-Liquid Separator (Enabling Technologies, Transport)
- Hydrogen Purifier (Enabling Technologies)
- Heat Exchanger (Enabling Technologies)

BOP Components of Fluid-Phase AB System

- Pumps
- Storage Tank(s) (Enabling Technologies)
- Fuel/Spent Fuel
- Ballast Tank

Task 7: LANL Fluid Phase Preliminary System Design

Task 7: LANL Liquid Phase Preliminary System Design

Task 7a Summary and Future Work: System Designs

Summary

• Developed many system design concepts for fluid-phase chemical hydrogen storage media (surrogate is fluid-phase AB)

- Provided preliminary system design to PNNL, NREL, and UTRC for modeling purposes
 - Sizing, temperatures, pressures, conversions, etc.
- Provided off-the-shelf components to PNNL for BOP costing
- Developed novel reactor, gas-liquid separator, and hydrogen purification train (unproven concepts)
- LANL fluid-phase chemical hydrogen storage system design down-selected based on 2015 DOE targets as the priority for Phase 2

Future Work

- Continue to refine system design (and models) as needed based on experiment validation experiments
- Identify, develop, and implement novel system components
- Update experimental setup and protocols as needed to ensure accurate data for model development

✓ <u>Relevance</u>:

- Component validation (performance and viability)
- System validation (system integration)
- Model refinement
- System refinement

✓ Expected Outcomes:

- Modular test bed for validating individual components or systems
- Test bed for acquiring kinetics (Task 4), impurities (Task 6), and reactor performance (Task 5)

✓<u>Task/Approach:</u>

- 7a.1 Design fluid-phase CHS system
- 7a.2 When possible use off-the-shelf BOP components
- 7a.3 Identify components that require novel R&D approaches

- Fluid Phase System Component Validation Setup
- Deployed for Phase 2 Activities
 - 1. Validate System Components and Technology
 - Reactors
 - Gas-Liquid Separators
 - *H*₂ *Purification*
 - 2. Validate and Refine System Models
 - 3. Optimize System Designs

Phase 2 Ready and Adaptable to any Fluid

Alan

EST 1943

UNCLASSIFIED

• Fluid Phase Chemical Hydride System Component Validation Setup

Kinetics Results from Using Fluid Phase • AB as a H₂ Source

Axial Temperature Profiles Observed

from Using Fluid Phase AB as a H₂

Task 7b Summary and Future Work: Test Bed

Summary

- Designed, built, and validated bench-scale fluid-phase chemical hydrogen validation test bed
 - Modular approach to validate individual components or integrated systems
 - Validate and refine system level models

Future Work

- Begin validating (via experiments) system-level modeling assumptions
- Validate novel component designs for performance and viability
- Provide system modelers the necessary experimental data for system-level model refinements
- Update experimental setup and protocols as needed to ensure accurate data for model development
- •Test bed fixture directly aligns with Task 4, Task 5, and Task 6

Task 2: LANL Fuel Gauge Sensor Development

✓ <u>Relevance</u>:

- DOE targets addressed: Safety
- All commercialized vehicles necessitate a fuel gauge sensor
- Health monitoring of high pressure tanks
- ✓ <u>Expected Outcomes:</u>
- Fuel gauge sensor for solid- and fluid-phase hydrogen storage media
- Containment vessel health monitoring

✓ Task/Approach:

- 2.1 Identify first generation fuel gauge sensors
- 2.2 Demonstrate fuel gauge sensor technology on candidate hydrogen storage media

	Phase	Deliverable	Description		Delivery to	Date
Deliverables	Phase 1	D1	First generation fuel gauge sensor (D	DEMONSTRATED)	DOE	Q4 FY09
	Phase 2	D20	Working fuel gauge sensor capable of monitoring H2 levels within +/- 5%		DOE & ECoE	Q2 FY12

	Phase Go/No-Go Description Phase 1 G1 Go/No-Go Decision on fuel gauge sensor (G		Description	Criteria*	Date		
✤ Go/No-Go			+/- 5% of H ₂ Stored	Q4 FY10			
	* all Go/No-Go decisions will be based on the most current DOE Technical Targets; the components or designs that most favorably compare to the DOE Technical Targets will be choser						

A Milestone	Phase Milestone		Description	Dependencies	Date
	Phase 2	M2	Fuel gauge sensor development and demonstration	TASK 2.1	Q3 FY11

Task 2: Acoustic Fuel Gauge Sensor Proof of Concept

Task 2: Acoustic Fuel Gauge Sensor Proof of Concept

LANL Acoustic Sensor Capable of Monitoring Containment Vessel Integrity

UNCLASSIFIED

Scotch

1-layer

Tape

NATIONAL LABORATORY

Task 2 Summary & Future Work: Fuel Gauge Sensor

Summary

- Demonstrated acoustic fuel gauge sensor proof-of-principle on various metal hdyrides
- Patent Submitted
- Demonstrated acoustic fuel gauge sensor capable of tracking state-of-charge for metal hydrides
- Demonstrated acoustic fuel gauge sensor capable of monitoring the structural integrity of containment vessels (e.g. adsorbent and metal hydride systems)

Future Work

- Finish proof-of-concept experiments for metal hydride system.
 - Permanently affix transducers to cylinder so that system may be moved for tracking state-ofcharge by direct mass change measurements.
 - Cycle charge of cylinder to determine how well change in acoustic signature tracks actual H₂ mass changes. Measure reproducibility between charge/discharge and intermediate states.
- Start hydrogen level sensor studies for liquid AB sources.
- Start sensor studies for cryogenic adsorption hydrogen sources. Investigate methods/options available.

Task 6: Hydrogen Impurities and Mitigation

✓ <u>Relevance</u>:

•DOE Targets Addressed:

•Cost

- •Durability and Operability
- •Environmental, Health and Safety

•Fuel Purity

✓ <u>Expected Outcomes:</u>

- •Impurities demonstrating fuel cell degradation for all candidate storage materials
- •Strategies for impurity mitigation/separation

✓ <u>Tasks:</u>

- 6.1 Identify impurities demonstrating fuel cell degradation
- 6.2 Determine adsorbate-adsorbent interactions
- 6.3 Quantify and model hydrogen impurities demonstrating fuel cell degradation
- 6.4 Identify novel impurity separation/mitigation strategies

✓ Go/No-Go Decision Criterion:

• DOE Technical Target of 99.99% H₂ purity (Q4 FY11)

	Phase	Deliverable	Description		Delivery to	Date			
	Dhees 1	D11	Identify fuel cell impurities		OE, HSMCoE, & ECoE	Q4 FY10			
✤ Deliverables	Phase T	D12	Quantify minimum fuel-cell impurity level for safe operation	D	OE & ECoE	Q4 FY10			
		D16	Determine fuel cell degradation via impurities	D	OE & ECoE	Q4 FY11			
	Phase 2	D17	Update on minimum fuel-cell impurity level for safe operation	D	OE & ECoE	Q4 FY11			
		D23	Working Impurity mitigation device with low cost, low volume & low mas	is D	OE & ECoE	Q2 FY12			
🖈 Milostono	Phase Milestone		Description		Dependencies	Date			
	Phase 2	M4	Impurity mitigation strategy development		TASKS 6.1 and 6.3	Q1 FY11			
	Phase	Go/No-Go	Description		Criteria	Date			
₩ G0/N0-G0	Phase 2	G2	Go/No-Go Decision on viable impurity mitigation/separation strategies ma		volume, cost, purity	Q4 FY11			
6									

EST. 1943

Task 6: Hydrogen Impurities and Mitigation

Matarial	One of $T (9C)$	Wt % (SD)						
Material	Unset I (C)	NH ₃	Borazine	Diborane				
AB	95	2.5 0.71	3.8 0.71	1.8 0.35				
Powder AB	82	2.7 0.42	2.2 0.21	0.99 0.0077				
AB/MC	77	4.6 1.0	2.0 0.35	0.85 0.071				

 $wt\% = \frac{species\ mass}{initial\ mass\ of\ AB} x\ 100$

2

Adsorption Media Tested

- 1. Ammoniasorb II
 - Selexsorb CD

- 3. Carbon
- 4. Zeolites + others

but.....

In order to reduce mass, volume, maintenance costs, etc.. We need to address the reaction selectivity

Batch Reactor Experiment

Task 6: Hydrogen Impurities and Mitigation

• Fuel Cell Tolerance Test with Diborane

VI-Curve:

 Losses (~20mV) were observed after 20h of exposure

AC Impedance:

- CTR increased with time
- HFR and MTR remained constant during exposure

Cyclic Voltammetry:

No effect on catalyst surface area

Additional long term testing is required to accurately assess FC tolerance level and degradation mechanism

A/C: 0.1/0.4 mg Pt/cm², 100% RH, and 25 psig back pressure using 83 and 50% utilization.

Preliminary Test Indicate Diborane Affects the Charge Transfer Resistance

-cm²

3

Z-)

Imaginary Impedance

Task 6 Summary & Future Work: Impurities & Mitigation

Summary

- Amount of impurities is a function of temperature and heating rate; mitigation strategies include increased control of reaction (i.e., thermal management, reactor design)
- Ammonia borane in current ionic liquid demonstrated a decreased production of borazine and no diborane
- Suppression of impurity generation may be achieved via catalytic routes of hydrogen release from fluid phase ammonia borane
- Borazine can be scrubbed using various adsorbents
- Preliminary fuel cell tolerance test with diborane indicate performance degradation

Future Work

- Quantify impurities using fluid-phase bench-scale validation test bed (TASK 7b)
- Examine impurity mitigation strategies (i.e., catalysts, temperature control, conversion, spacetime, etc.) on reaction selectivity

Task 4: Reaction Rate Models for AB/IL Systems

UNCLASSIFIED

Collaborations

External Collaborators	Effort	Contact
H ₂ Production & Delivery Tech Team	Forecourt Requirements	S. Weil (DOE)
H ₂ Codes and Standards	General Guidance	C. Padro (LANL)
Chamical Undragon Starage Dessarchers		L. Sneddon (U. Penn)
Chemical Hydrogen Storage Researchers	ivialenais Opdales	T. Burrell (LANL)
		T. Rockward (LANL)
LANL FUELCEILIEAM	Fuer Cerr impunties	R. Borup (LANL)
H ₂ Safety Panel	General Guidance/Concerns	S. Weiner
SSAWG	Technical Collaboration	G. Ordaz (DOE)
H ₂ Storage Tech Team	General Guidance	Ned Stetson (DOE)
Argonne National Laboratory	Independent Analyses	R. Ahluwalia

ECoE Collaborators	Effort	Contact
	Ammonia Scrubbing	B. van Hassel
UTRC	Simulink Modeling	J. Miguel Pasini
	Safety	J. Khalil
	MOR	E. Ronnebro
PNNL	System Modeling	K. Brooks/M. Devarakonda
	ВОР	K. Simmons
NREL	Vehicle Modeling	M. Thornton
LOS Alamos		

EST. 1943

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Fuel Cell Technologies Program: Hydrogen Storage Technology Development Manager: Ned Stetson

Backup Slides

UNCLASSIFIED

Task 7: LANL Liquid Phase Preliminary System Design

	Calculated	System	2010 Goal	2015 Goal		Fraction of Goal
Gravimetric Density	147.85 kg	.0378	.045	.055	kg/kg	82.6%
Volumetric Density	163.3 L	.0344	.028	.040	kg/L	122%

Task 7 Future Work: Fluid Phase System Projections

Gravimetric Ratio = $0.067 \frac{kg H_2}{kg_{system}}$

Volumetric Density = $0.053 \frac{kg H_2}{L_{system}}$

Assumptions: •½ of SS tubing •80 wt% solubility •No H₂ purification train •Cut 10% contingency •36 kW radiator •No performance degradation •All unit operations work as "designed"

There may be other mass and volume savings that have yet to be identified or addressed

Task 7 Future Work: Fluid Phase System Projections

Path A to B

•Increase solubility from 50 wt% to 80 wt% (fluid phase)

Path A to C

•Increase from 50 wt% to 100 wt% (i.e., neat AB, upper bound)

<u>Path A to D</u>

•Eliminate Mass by

- •¹/₂ of SS tubing
- •No H_2 purification train
- •Cut 10% contingency
- •36 kW radiator
- •No performance degradation
- •All unit operations work as
- "designed"

<u>Path A to F</u>

•Same as A to D but increasing from 50 wt% AB to 100 wt% AB (i.e., neat AB, ultimate upper bound)

Point A = Current State-of-the-Art Fluid Phase Chemical Hydrogen Storage System

Big Picture

