

System Design, Analysis, Modeling, and Media Engineering Properties for Hydrogen Energy Storage

2011 DOE Hydrogen and Fuel Cell Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Matthew Thornton, NREL

May 11, 2011

Project ID# ST008

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

Timeline

HSECoE start date: FY09 HSECoE end date: FY14 Percent complete: 35%

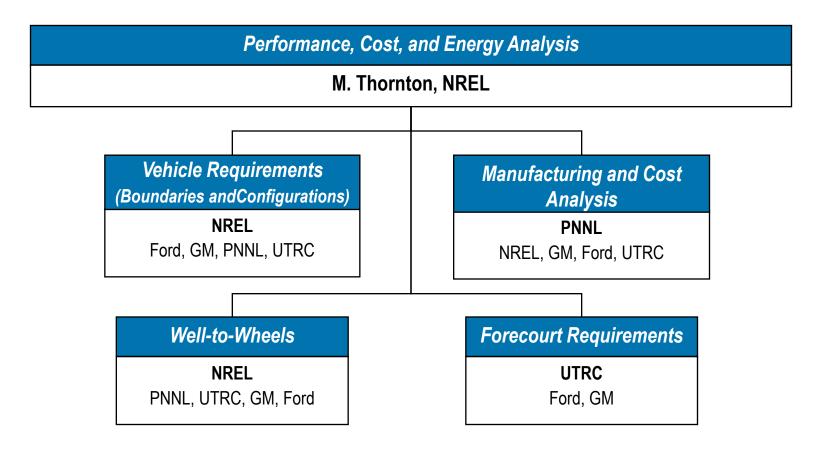
Budget

Total funding \$1.8M FY 2009: \$425K FY 2010: \$660K FY 2011: \$400K

Barriers

- System cost
- Charge/discharge rate
- System mass
- Systems volume
- Life-cycle GHG emissions
- Transient response
- Well-to-power plant efficiency

Partners


SRNL, PNNL, UTRC, UQTR, JPL, Ford, GM, LANL, OSU, BASF, DOE HSCoE, DOE MHCoE, the DOE Vehicle Technologies Program.

Objectives

System Design, Analysis, Modeling, and Media Engineering Properties for Hydrogen Energy Storage

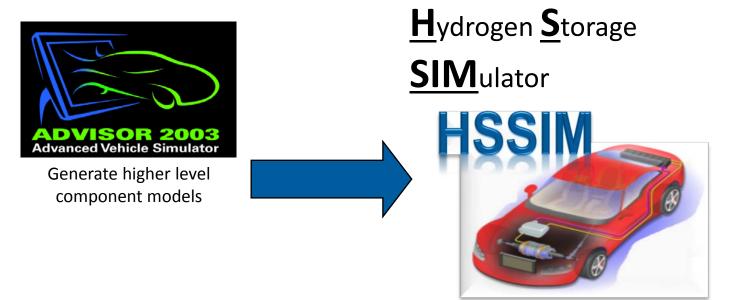
- Manage HSECoE performance, cost and energy analysis technology area
- Vehicle Requirements: Develop and apply model for evaluating hydrogen storage requirements, performance, and cost tradeoffs at the vehicle system level.
- Well-to-wheels: Perform hydrogen storage system WTW energy analysis to evaluate GHG impacts with a focus on storage system parameters, vehicle performance, and refueling interface sensitivities.
- Media engineering properties: Assist center in the identification and characterization of sorbent materials that have the potential for meeting DOE technical targets as an onboard systems.

Performance, Cost, and Energy Analysis Technology Area Management

Objectives – Vehicle Requirements

- Develop and apply a model for evaluating hydrogen storage requirements, performance and cost trade-offs at the vehicle system level; e.g. Range, cost, size, efficiency, mass, performance, onboard efficiency
- Model application will identify
 - Storage system sizing
 - Relative importance/sensitivity of tradeoffs
 - Critical tech targets
 - Pathways to meet GO/NO-GO criteria
 - Important trends
 - Assumptions that are "driving" vehicle design and H₂ storage requirements

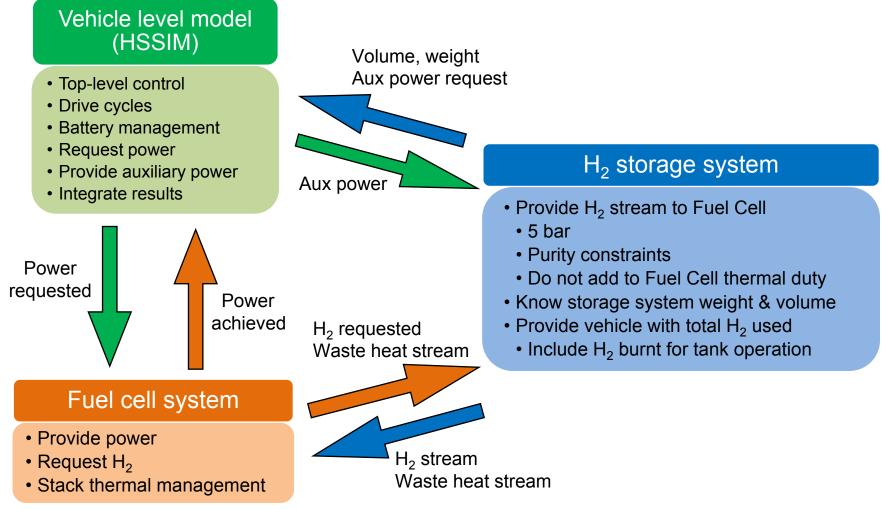
Objectives – Well-to-Wheels Analysis

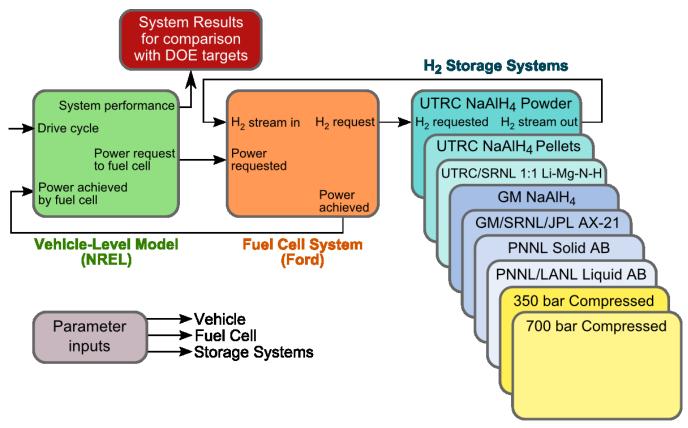

- Perform hydrogen storage system WTW energy analysis to evaluate GHG impacts
 - Develop vehicle a level models and obtain FE figures for overall WTW analysis.
 - Obtain data from center partners on storage system designs (mass, volume, operating T and P)/fuel interface/dispensing/station energy requirements.
 - Use existing data for H₂ production and distribution and tank production and CO₂e emission factors (GREET, H2A, etc.) and calculate WTV (power plant) efficiencies.
 - Adjust model inputs based on changes in storage system design and data to obtain final results.

Objectives – Media Engineering Properties

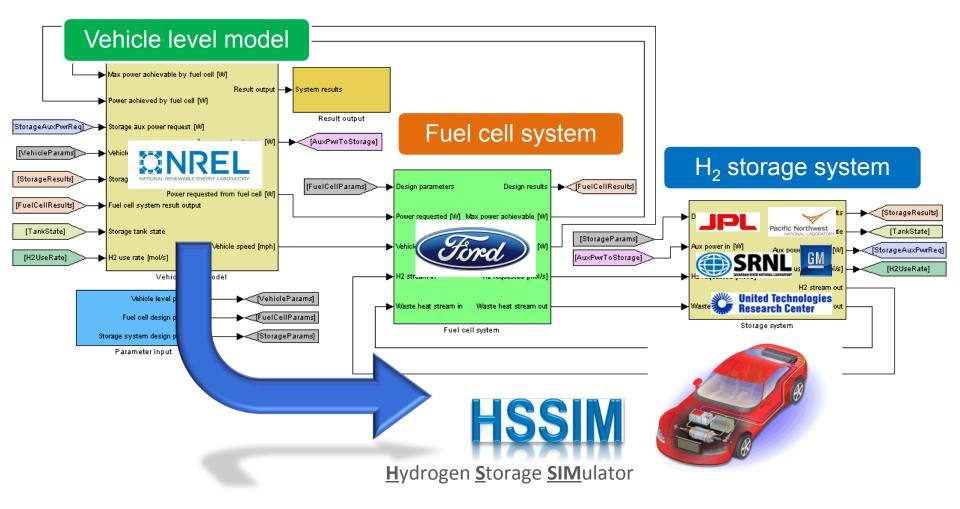
- Work with Hydrogen Storage Center of Excellence and community to identify potential materials for engineering analysis.
 - Technology Team Co-Lead: Hydrogen Storage Materials Center of Excellence Collaborations, in the Materials Operating Requirements (MOR) Technology Area
- Measure and characterize promising sorption material properties for onboard hydrogen storage engineering analysis.
 - Technology Team Lead: Adsorbent Material Properties, in MOR Technology Area
- Provide detailed material property input and guidance for analysis and design of hydrogen storage systems optimized for sorption materials.

Accomplishments – Vehicle Requirements


Created a Hydrogen Storage Vehicle Model (HSSIM)


Run faster simulations

A tool to be used across the engineering center to evaluate candidate storage system designs on a common vehicle platform with consistent assumptions


Developed well-defined, high-level interfaces

Slide provided courtesy of José Miguel Pasini UTRC

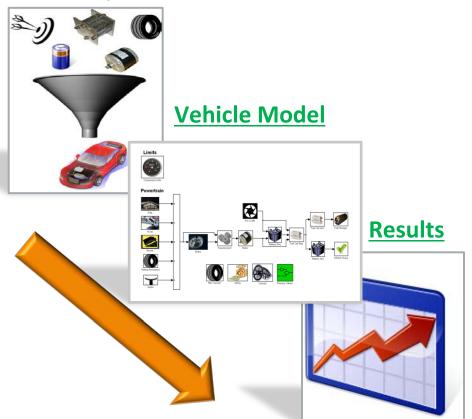
Integrated Model Framework

Implemented in the MATLAB/Simulink environment

HSSIM (Vehicle Model) Structure

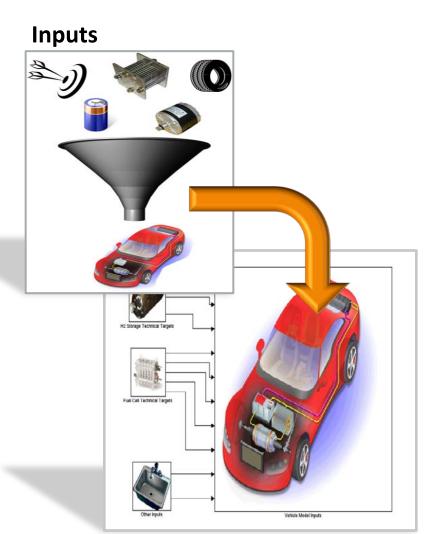
Model Inputs

- Vehicle characteristics
- Fuel cell characteristics
- H₂ storage system
- Vehicle level test matrix


Vehicle Model

Power requirement calculation

Results


- Fuel economy (mpgge)
- Range (miles)
- Vehicle mass (kg)
- Onboard efficiency (%)
- Vehicle performance

Model Inputs

Key Vehicle-Level Components

- 1. H₂ storage system
- 2. Fuel cell system
- 3. Motor and power electronics
- 4. Energy storage
- 5. Vehicle attributes

Vehicle Model Components

From the H₂ Storage System

Significant Inputs:

- System mass (kg)
- System volume (I)
- Onboard usable H₂ (kg)
- H₂ total use rate (mol/s)
- Auxiliary power request (kW)
- System cost (\$/kWh)

From the Fuel Cell System

Significant Inputs:

- System mass (kg)
- System volume (I)
- Max power achievable (kW)
- H₂ flow received (mol/s)
- Power achieved (kW)
- System cost (\$/kWh)

Assumptions

Vehicle

Midsize Car Class (Family Sedan):

Vehicle Attribute	Units	Value
Glider mass ¹	kg	990
Frontal area	m²	2.2
Drag coefficient	-	0.29
Rolling Resistance	_	0.008
Tires	—	P195/65R15

¹ Excludes fuel cell, hydrogen storage system, electric motor, power electronics, and energy storage system

Vehicle Test Schedule

UDDS

Urban Dynamometer Drive Schedule

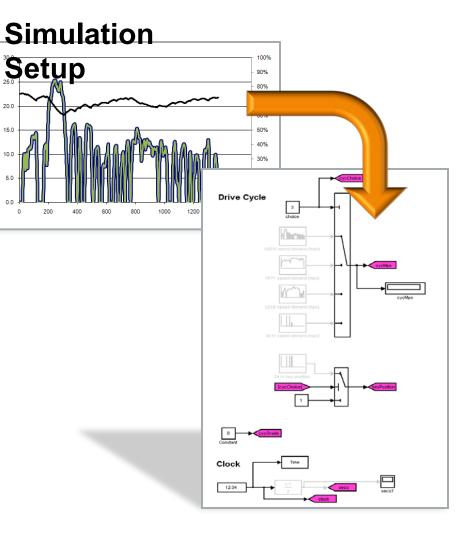
20.0

15.0

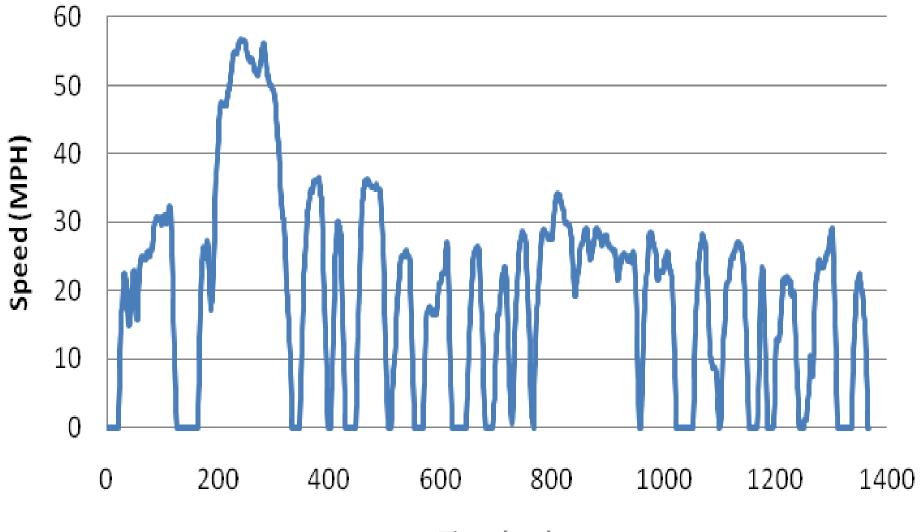
10.0

5.0

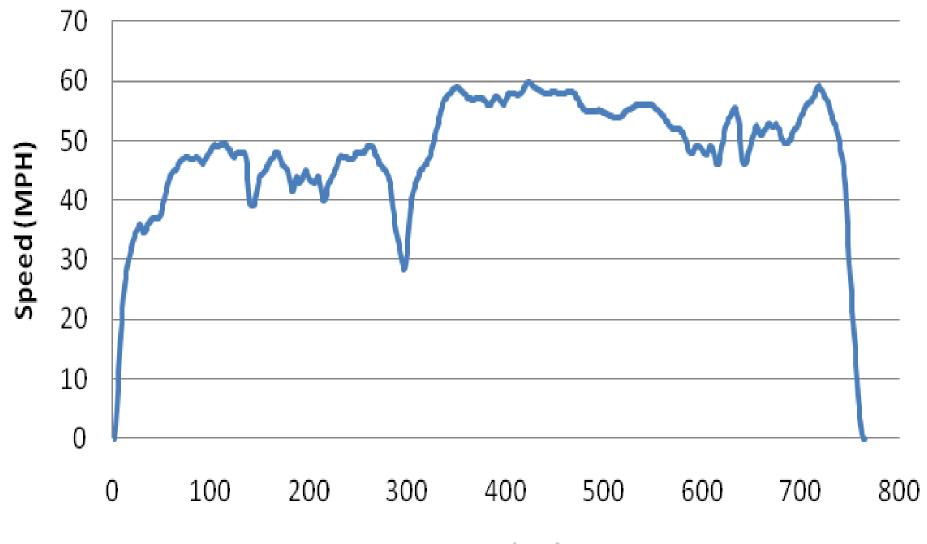
HWFET

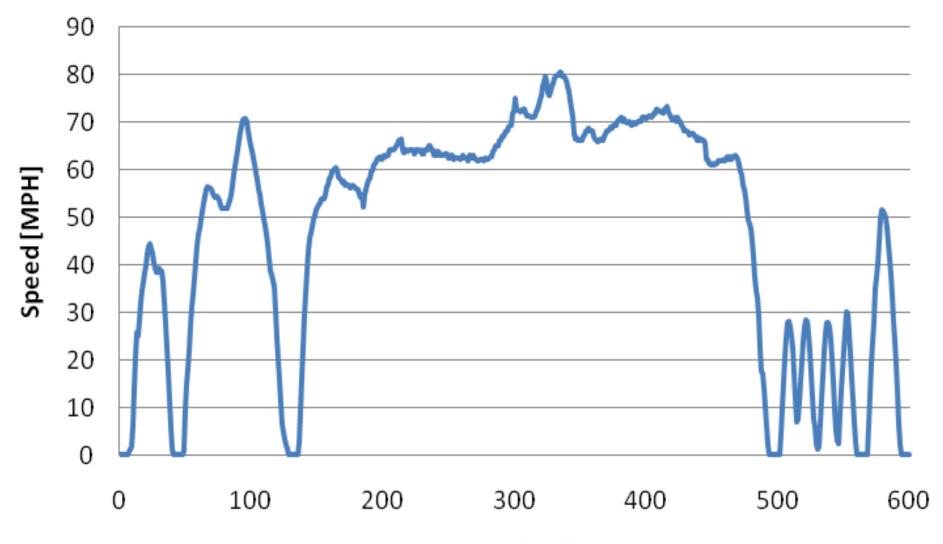

Highway Fuel Economy Cycle

US06


Supplemental Federal Test Procedure

SC03


Supplemental Federal Test Procedure

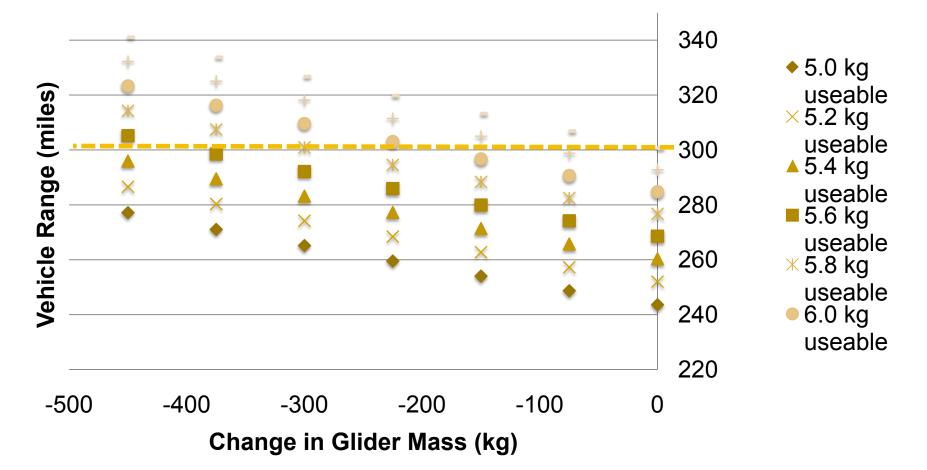

Case	Test Schedule	Cycles	Description	Test Temp (°F)	Distance per cycle (miles)	Duration per cycle (minutes)	Top Speed (mph)	Average Speed (mph)	Max. Acc. (mph /sec)	Stops	Idle	Avg. H2 Flow (g/s)*	Peak H2 Flow (g/s)*	Expected Usage
	Ambient Drive Cycle - Repeat the EPA FE cycles from full to empty and adjust for 5 cycle post-2008	UDDS	Low speeds in stop-and-go urban traffic	75 (24 C)	7.5	22.8	56.7	19.6	3.3	17	19%	0.09	0.69	 Establish baseline fuel economy (adjust for the 5 cycle based on the average from the cycles) Establish vehicle attributes Utilize for storage sizing
1		HWFET	Free-flow traffic at highway speeds	75 (24 C)	10.26	12.75	60	48.3	3.2	0	0%	0.15	0.56	
2	Aggressive Drive Cycle - Repeat from full to empty	US06	Higher speeds; harder acceleration & braking	75 (24 C)	8	9.9	80	48.4	8.46	4	7%	0.20	1.60	Confirm fast transient response capability – adjust if system does not perform function
3	Cold Drive Cycle - Repeat from full to empty	FTP-75 (cold)	FTP-75 at colder ambient temperature	-4 (-20 C)	11.04	31.2	56	21.1	3.3	23	18%	0.07	0.66	1. Cold start criteria 2. Confirm cold ambient capability – adjust if system does not perform function
4	Hot Drive Cycle - Repeat from full to empty	SC03	AC use under hot ambient conditions	95 (35 C)	3.6	9.9	54.8	21.2	5.1	5	19%	0.09	0.97	Confirm hot ambient capability - adjust if system does not perform function
5	Dormancy Test	n/a	Static test to evaluate the stability of the storage system	95 (35 C)	0	31 days	0	0	0	100%	100%			Confirm loss of useable H2 target

Time (sec)

Time (sec)

Time [sec]

Model Outputs


- 1. Fuel economy (mpgge)
- 2. Range (miles)
 - H₂ storage must enable a driving range >300 miles
 - UDDS and HWFET fuel economy values are adjusted and combined based on EPA standards
 - Calculation is based on the combined fuel economy value
- 3. Vehicle mass (kg)
- 4. On-board efficiency (%)
- 5. Drive matrix performance

Results

Model Application – NaAlH₄ Example

Change in Range as a Result of Glider Mass Reduction and Increased Onboard Usable H₂

Results – NaAlH₄

Vehicle Test Schedule Results: Reduced glider mass and increased onboard $\rm H_2$

- Multiple options available to achieve 300 mile range goal
- Must decide which direction to take to achieve most viable vehicle system

Vehicle Results	Units	NaAlH ₄	NaAlH ₄	NaAlH ₄
Usable H ₂	kg	5	6.4	5.6
Glider Mass	Kg	900	900	450
Vehicle Mass	kg	1791	1924	1398
UDDS Fuel Economy	mi/kg-H ₂	46.6	44.9	52.6
HWFET Fuel Economy	mi/kg-H ₂	51.5	49.8	57.0
Combined Fuel Economy	mi/kg-H ₂	48.7	47.0	54.5
Range	miles	244	301	305
Assumptions apply time el cell power wit	h 25% hybridization a	nd a 900 W electric motor	11.3	9.3

Accomplishments: WTW Analysis

- Obtained GHG emissions and WTV efficiency figures for baseline physical storage systems from DOE base case analysis.
- Ran HDSAM to estimate GHG emissions and WTV efficiency figures for solid state storage systems including NaAlH₄ and AX21.

Energy and WTW Analysis

Utilize H2A Hydrogen Delivery Scenario Model (HDSAM)

Standardized Excel spreadsheet tool with the same H2A approach to cost, energy efficiency and GHG emissions analysis but more complex

Pre-loaded with current capital costs and utility costs of H2 delivery components – pipelines, tube trailers, LH2 trucks, terminals, refueling stations, etc.

User specifies a delivery scenario:

- Urban or city and which city
- Market penetration (%)
- Transport mode (to terminal) and distance
- Distribution mode (terminal to refueling stations)

Model calculates: delivery cost (\$/kg-H₂), energy efficiency (WTW (power plant)), and GHGs (gms/mile)

WTW Base Assumptions for HDSAM

Production: Market: Plant (and Regen.): Electricity: Large scale storage: Transport:

Distribution:

SMR

Sacramento, 15% market penetration

62 miles (100 km) from city gate

U.S. grid

Geologic, LH2, liquid

Plant to city gate terminal

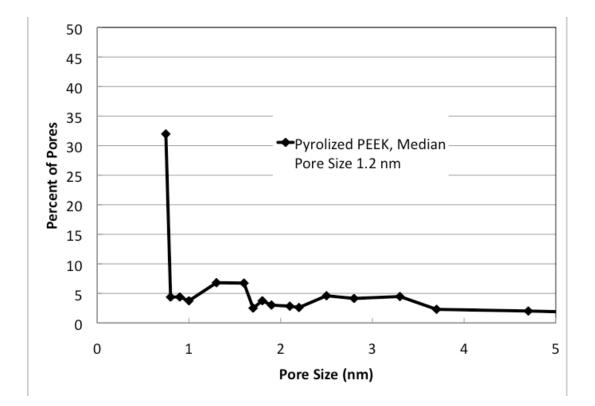
- GH2 pipeline
- LH2, liquid carrier truck

City gate terminal to refueling stations – truck Refueling Station Size: 1000 kg/day maximum (may be limited by one delivery per day or 9% coverage)

HDSAM Application – Analysis of Storage System Being Assessed

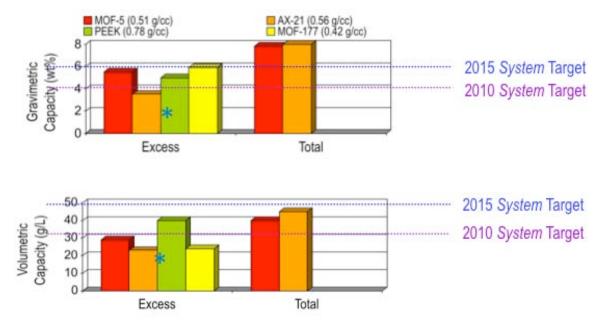
Information needed for each storage system

- System weight, wt%, density, and volume
- Total and usable H₂ (5.6 kg)
- Venting rate and dormancy time
- System T and P at full and 1/4 tank
- Energy used to release H₂
- System cost
- Cooling load at refueling station
- Fill time/rate
- Fuel economy (from HSSIM)


Accomplishments: WTW Analysis

Preliminary Physical Storage GHG Emissions Figure from DOE Base Case Analysis and Solid State Systems from HSECoE Analysis

	WTW H ₂ Cost (\$/kg)	WTV Efficiency (%)	WTW GHG (gms/mi)
350 Bar Pipeline	4.26	56.7	197
700 Bar Pipeline	4.71	54.4	208
CcH ₂ LH Truck	4.80	42.7	279
250 MOF 177	4.80	42.7	279
200 AX-21	4.81	42.5	373
NaAlH4	7.32	44.1	198
Liquid AB			
MOF-5			
TiCr(Mn)H2			


Accomplishments – Media Engineering Properties

- NREL demonstrated that materials with optimized pore structures/sizes can have excellent volumetric capacities
 - NREL has adjusted processing to produce pyrolyzed polyether ether ketone (PEEK) materials with a median pore diameter of ~1.2 nm and ~3000 m2/g.

Accomplishments – Media Engineering Properties

- NREL demonstrated that materials with optimized pore structures/sizes can have excellent volumetric capacities
 - This material has the potential to meet DOE 2015 system targets for both gravimetric and volumetric hydrogen storage capacities at~80 K storage temperatures. This is due to the ability of these optimized materials to have demonstrated specific surface areas over 3000 m2/g and bulk densities over 0.7 g/ml.

Comparative Summary: Materials-based hydrogen uptake for different compacted sorbents being evaluated by the HSECoE

- * PEEK data based on pellet in press vessel (i.e. freestanding pellet not yet obtained)
- Values taken at max. excess uptake which corresponds to pressures of 60, 30, 40, and 50 bar for MOF-5, AC, PEEK, MOF-177 respectively; T = 77 K.
- AC and PEEK data taken from Aug. 2010 Sorbent SA Meeting slides.
- MOF-177 data from R. Zacharia et al, J. Mater. Chem. 2010, 20, 2145.

Milestones

- Recommend materials for future H₂ storage system analyses by the HSECoE Complete (3/11)
- Evaluate various storage system impact on vehicle performance, cost and viability (9/11) Complete
- Evaluate various storage system efficiencies (energy inputs, GHG emissions and well to power plant efficiency) 50% Complete (9/11)
- Provide HSECoE appropriate engineering properties on recommended materials for future H₂ storage system analysis 50% Complete (9/11)

Next Steps

- Continue to run simulations to:
 - Refine storage systems sizing
 - Evaluate progress toward tech targets
- Run HDSAM to evaluate (liquid AB, MOF-5, and TiCr(Mn)H₂:
 - Well-to-power plant efficiency
 - GHG
 - \circ H₂ cost
- Looking at ambient temperature PEEK and Pt/AC-IRMOF 8, which enables RT storage system

Summary

- Manage HSECoE performance, cost, and energy analysis technology area.
- Develop and apply model for evaluating H₂ storage requirements, performance, and cost tradeoffs at the vehicle system level.
- Perform H₂ storage system WTW energy analysis to evaluate GHG impacts with a focus on storage system parameters, vehicle performance, and refueling interface sensitivities.
- Assist center in the identification and characterization of sorbent materials that have the potential for meeting DOE technical targets as an onboard systems.