

Optimization of Heat Exchangers and System Simulation of On-Board Storage Systems Designs

May 11, 2011

Darsh Kumar – P.I.

Jerry Ortmann, Martin Sulic, Mei Cai, Senthil Kumar V., M. Raju, Scott Jorgensen, Greg Garabedian

General Motors Company

Project ID: ST009

This presentation does not contain any proprietary, confidential, or otherwise restricted information

May 11, 2011

Overview

Timeline

- Project Start: February 2009
- Phase I end: Mar 2011
- Phase II end: July 2013
- Project end: June 2014
- % complete: 35%

Relevance/Barriers Addressed

- System weight and volume (A)
- Energy efficiency (C)
- Charging/discharging rates (E)
- Thermal management (J)

<u>Budget</u>

- DOE: \$2,954,707
- GM Match: \$738,677
- Funding in FY 10: \$750,000
- Funding for FY 11:\$475,000

A Member of Hexagon Composites Group

Plan and Approach

System Simulation Models and Detailed Transport Models for Metal Hydrides:

- System simulation models for metal hydrides, incorporate in the integrated framework
- Build detailed 2-D models to include heat transfer, chemical rxns, guide system models
- Novel heat exchanger designs
- Optimization of heat exchanger designs
- Test simulation models for system performance, performance metrics in relation to DOE targets

Pelletization of AX-21 and sodium alanate (with UTRC):

- Binders and additives for pelletization
- Test various binders and additives for pelletization
- Measure hydrogen uptake, thermal conductivity, and pellet strength

System Simulation Models and Detailed Transport Models for Adsorbent Systems (with SRNL):

- System simulation models for activated carbon and MOF-5
- Build 2-D models to include adsorption and heat transfer to guide system models
- Identify system operating conditions for high gravimetric density
- Test simulation models for system performance, performance metrics in relation to DOE targets

Other Tasks (with HSECoE partners):

- OEM Team's prioritization of DOE Technical targets
- Development of an integrated framework including the vehicle, fuel cell, and H₂ storage system models
- Integration of hydrogen storage models in a common framework

Introduction

• Metal Hydride Systems:

- For known materials, system capacity too low to meet on-board system performance goals.
 Surrogate materials: a complex MH (sodium alanate) and a high-pressure MH (Ti_{1.1}CrMn)
- System models developed focus on system design and engineering improvements
- Models built to evaluate performance of different systems on a common HSECoE Framework using same set of 4 drive cycles

Heat exchanger designs and optimization – Detailed models

- MH in bed with cooling tubes and interconnected aluminum fins
- Helical coil heat exchanger design
- MH in tubes and coolant in shell
- Each design optimized by varying the geometric parameters

System operation for 4 Drive Cycles

- Mass balance for hydrogen
- System performance in relation to DOE targets
- Cryo-adsorbent systems (with SRNL)
 - System design and simulations
- Pelletization of storage media
- Other contributions to the HSECoE

May 11, 2011

For modeling, it is necessary to choose a <u>surrogate material</u> Sodium alanate chosen as the surrogate material because of data availability

- Complex metal hydrides characterized by high heat of absorption/desorption
- Reactions proceed significantly only at high temperatures
- Thermal management of the system during refueling is challenging
- Need to explore <u>optimized heat exchanger designs</u>

 $NaAlH_4 \leftrightarrow 1/3 Na_3AlH_6 + 2/3 Al + H_2 \qquad \Delta H = -37 kJ/mole H_2$

 $1/3 \text{ Na}_3\text{AlH}_6 \leftrightarrow \text{NaH} + 1/3 \text{ Al} + \frac{1}{2} \text{ H}_2 \qquad \Delta H = -47 \text{ kJ/mole H}_2$

Multiple Bed Storage System for MH Systems

- System models necessary for evaluation of system performance relative to DOE targets
- Multiple bed design considered important because of vehicle architecture , energy efficiency , or heat exchanger design
- Beds sized for 5.6 kg deliverable H2
- A catalytic burner to supply heat of desorption and a buffer volume possibly necessary for cold starts
- System model must include control scheme to transfer control among the beds and buffer

Heat Exchanger Designs

- Heat exchangers very important part for system mass and volume
- Multiple heat exchanger designs
- Optimize each type of heat exchanger design

Cooling/heatin

g∖tubes

Alanate bed

≻Choose the best

Aluminum fins

Design - II

HELICAL COIL HEAT EXCHANGER WITH ALANATE IN SHELL

Design - III

SHELL AND TUBE HEAT EXCHANGER WITH ALANATE IN TUBES

Design - I SHELL AND TUBE HEAT EXCHANGER WITH ALANATE IN SHELL May 11, 2011

Heat Exchanger Design - I: Dual Bed Design

- For this design 2-beds necessary
- Control scheme to be devised for transfer of control between beds and buffer
- For <u>design optimization</u>, parameters varied
 - Bed diameter, r1, r2, and r3
 - Fin and tube thickness
 - Tube diameter

2011 DOE Annual Merit R Washington DC

System Charging: 2-D COMSOL Simulation

8

Dual Bed Design Results for Drive Cycle 1

Drive Cycles 1 (Ambient) and 2 (Aggressive)

> Drive Cycles 3 and 4 test operability at cold and hot ambient T – not shown

May 11, 2011

Design – II (Helical Coil Heat Exchanger with Alanate in Shell)

- Helical coil heat exchanger works well with systems with internal heat generation, has higher heat transfer coefficient than straight tubes because of higher turbulence
- For effective heat transfer, coil radius and pitch can be determined as a function of system properties ΔH , k, ΔT , w, ρ_b , t_f
- <u>Optimized the design</u> by changing vessel diameter, coil diameter, and pitch for sodium alanate system

 Heat exchanger mass is roughly 1/3 that in conventional design.

May 11, 2011

Helical coil design – 7 beds

• Helical coil hex weight is about 1/3 of the previous system, but for NaAlH₄, 7 vessels are needed

 But this design is very promising for a high capacity material with somewhat lower ΔH

Helical Coil Design – Ambient and Aggressive Cycles

Drive Cycles 3 and 4 test operability at cold and hot ambient T – not shown May 11, 2011 2011 2011 DOE Annual Merit Review 13 Washington DC

Design III – Alanate in Tubes Design

- 81 tubes, 9x9 arrangement, possibly modular arrangement
- Coolant flow in the shell
 Heat flux bo
- Tube diameter determined by heat transfer requirements
- Tube thickness determined by structural considerations
- Limited optimization opportunities

Cryoadsorption System Modeling (in cooperation with SRNL)

- During refueling, heat of adsorption is removed by passing excess cold H₂ through the bed
- Cold H₂ used to refuel the tank, cools it as well as remove the heat of adsorption
- Similarly, during discharge heat can be supplied via a heated H2 stream, electrically, or via radiator fluid

SRNL will discuss cryoadsorption system models in detail

System Pressure Considerations

- For pressures less than 100 bar, aluminum tanks are a cost-effective option
- For pressures 100 bar or greater, considered a composite tank.
- Conducted calculations for 20 -100 bar assuming an inner aluminum vessel and calculations for 60-300 bar assuming a composite vessel
- Assumptions
 - 5.6 kg usable H₂
 - Convective cooling assumed, no in-tank heat exchanger
 - 1" MLVSI wrapped around the inner vessel, outer vessel aluminum
 - Inner vessel thickness from Lincoln Composites
 - 5% extra adsorbent, additional 10% volume provided for manifolds and piping
 - Fixed BOP mass included
- Technical gaps for composite tanks for cryo applications:
 - Off-gases evolved during curing of the resin will destroy the vacuum in MLVSI
 - Development of resins that do not emit off-gases or a way to capture them necessary to maintain vacuum
 - Material strength lower at cryogenic temperatures

Gravimetric & Volumetric Densities for AX-21 and MOF-5 Systems

System modeling for 60 bar and 200 bar systems for AX-21 and MOF-5 in collaboration with SRNL. System weights and volumes by PNNL.

NaAIH4 Pellets Effect of Cycling on Density & Capacity

GW

NaAlH4 Pellets **Density & Thermal Conductivity**

May 11, 2011

Washington DC

Compacted AX-21 Sorbent Total gravimetric and volumetric H₂ uptake data

- > 2x densification (to 0.56 g/cm³) resulted in a 33% decrease in total gravimetric capacity
- Total materials volumetric capacities for ~ 0.5 g/cm³ compacts at 60 bar & 77 K: 40 g/L
- > 1.5 x improvement in volumetric capacity achieved for AX-21
- Modeling and theoretical studies planned to understand the impact of pellet size on H2 adsorption, heat transfer, and bed packing density

Correlation between hydrogen adsorption and pore structures

Adsorption at 30 bar

Both pore volume and excess gravimetric hydrogen adsorption are linearly correlated with the sample surface area

Collaborations

In general, regular contact with most partners because of participation in system modeling, media compaction, and detailed transport studies

In particular,

- UTRC, NREL, Ford Integrated Framework Development and system model inclusion in the framework
- Ford OEM Work on target prioritization, sorbent compaction
- UTRC sodium alanate pelletization studies, MH system models
- SRNL Cryoadsorbent system simulation models and detailed transport models
- PNNL Provided system level schematics and operating conditions data for component sizing and cost

SUMMARY

- System design for sodium alanate developed. The dual bed system has been considered in detail for gravimetric and volumetric densities.
- Three heat exchanger designed optimized and considered in detail.
- Modular helical coil design offers low heat exchanger weight and may offer lower cost than the dual bed system
- All NaAlH₄ systems are able to handle the four test drive cycles successfully but require substantial fraction of hydrogen to be used for desorption
- A system model fro cryo-adsorption system has been developed in conjunction with SRNL. System densities considered as a function of pressure
- Design analysis and methodology developed can be adapted to different materials - both MH and adsorption materials. For MH, need higher w (H2 absorption capacity) and bed density ρ, but lower ΔH and lower T operation
- Sodium alanate and AX-21 pelletized and properties cycling, capacity, thermal conductivity, pellet expansion studied.

Future Work

- System design and model verification of new and reduced weight HX and other component designs for a better metal hydride chosen by HSECoE
- Include media compaction in system and detailed transport models
- Update system models with novel materials, novel HX designs and component models with goal of developing a suitable metal hydride prototype for Phase 3 testing and evaluation.
- For the cryoadsorption system, build a small vessel to verify critical assumptions and conduct experiments to validate the concept of convection cooling during refueling and validate the detailed transport models.
- Control pellet expansion and thermal conductivity degradation through mechanical confinement
- Cold pelletization of AX-21 and binders to allow for rapid manufacturing and reduce extensive pellet work-up
- Provide input for the design of cryo-adsorption prototype in Phase III.

Acknowledgements

- This work was performed under DOE contract DE-FC36-09GO19003 as GM's contribution to the DOE Hydrogen Storage Engineering Center of Excellence (HSECoE)
- Lincoln Composites for providing design estimates for the liner and composite materials
- Ned Stetson and Jesse Adams of DOE for their support
- HSECoE team for many discussions and support
- Mark Verbrugge of General Motors for support and resources

Technical Back-Up Slides

Cold (DC3) and Hot (DC4) Drive Cycles

Compacted Sorbents Methods for compaction of AX-21

- 1. Selection of binders
 - Type of binders (PVDF, PVA, PTFE,...)
 - Same type of binder but with different melt viscosity Kynar[®] PVDF: HS900 > 301F > 721
 - Binder in the form of powder or solution

PVDF solution in NMP solvent;

PTFE solution in water;

PVA solution in water.

- 2. Mixing of sorbents with binder (typically 5 wt%)
- 3. Hydraulic press at 25-300°C (using heating band) and pressure of 40-400 MPa.
- 4. Post-treatment of the pellets
 - Degassing of the pellets at 155°C for 15 h

* = Data based on pellet in press vessel (i.e. freestanding compacts not yet obtained)

MOF-177 data from R. Zacharia et al, *J. Mater. Chem.* 2010, 20, 2145. May 11, 2011 2011 2011 2011 2011 Washington DC

Case -1 System level evaluation

	units	Value	Comments	
Number of beds		2]
deliverable hydrogen	kg	5.3]
Length (alanate packing)	mm	1000		1
Actual length of the bed	mm	1292.0	based on design considerations]
Diameter of the bed (inner)	mm	370.0		1
Diameter of the bed (outer)	mm	393.3		1
Shell material		Composite carbon]
No of cooling tubes		24.0]
Diameter of cooling tubes (inner)	mm	15.0		
Pressure drop for cooling fluid	bar	1.07	pressure drop inside the bed	
Temperature rise of the fluid	к	3	between inlet and outlet stream	
Weight of alanate	kg	184.42	for 2 beds	
weight of shell include liner	kg	65.49	for 2 beds	
weight of tubes and fins	kg	69.43	for 2 beds	
accessories (manifolds, end plates etc)	kg	25.4	10% of alanate+fins wt	
pump/HEX/burner	kg	8.00	rough estimate for 12 kW burner	
pump/HEX/burner volume	liters	8.00	rough estimate for 12 kW burner	
BOP mass	kg	12.69	5% of alanate+fins wt	
Oil mass	kg	6.4	based on 1.5*total tubes volume	
Buffer	kg	5.05	0.5 H2+5kg container]
Buffer volume	liters	11.30	9.3 H2 + 2 container]
Total weight of the bed	kg	319.34	alanate+shell+fins	
Total volume of the beds	litres	313.92	2 beds	
Total system volume	liters	333.22	bed+HEX+buffer	
Total system mass (tubes, plates	2			
shell/insulation, alanate)	kg	376.9	bed+HEX+BOP+buffer	
Gravimetric density 2011 DOE A				3
Volumetric density VVas	anington	0.0159		

May 11, 2011