A Biomimetic Approach to Metal-Organic Frameworks with High H₂ Uptake

Hong-Cai (Joe) Zhou Texas A&M University May 12, 2011

ST018

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview Budget

Timeline

- Project start date: 7/1/2007
- Project end date: 6/30/2012
- Percent complete: 85%

Barriers

H₂ uptake at room temperature is low despite high uptake at 77 K

Current heat of adsorption for common sorbents is around 5 kJ/mol

> To reach high storage capacity at ambient temperature, ΔH needs to be in the range of 15 to 30 kJ/mol

Materials with high surface areas generally have low volumetric uptake ST018

► Total project funding

Total project funding (DOE:
\$1,342,819; Contractor: \$771,856)

- > FY07 \$ 100,000
- ≻ FY08 \$0
- ≻ FY09 \$ 742,260
- ➢ FY10 \$ 300,000
- ≻ FY11 \$ 200,559

Partners

- ≻ ANL (APS)
- > ORNL, LLNL
- Seoul National University
- ➢ Dept. of Chem. Eng., TAMU
- KIT, Germany
- ≻ GM
- ≻ SWRI[®]

Ultimate Goal

(Technical Challenges)

Approach/Milestone

Month/Year	Approach and Milestone
Nov-08	Milestone: Optimize the alignment of the coordinatively unsaturated metal centers of MOFs and construct a new MOF, PCN-12, which exhibits an exceptionally high H_2 uptake of 3.0 wt% (24.6 mg/cm ³) at 760 Torr and 77 K. The H ₂ -adsorption heat of PCN-12 can reach as high as 12.5 kJ/mol at low coverage. (Status – 100% complete)
Nov-09	Milestone: Construct the catenation isomer pairs of PCN-6 and PCN-6'. H_2 sorption measurements at pressures up to 50 bar demonstrate that framework catenation can be favorable for the enhancement of hydrogen adsorption. The excess hydrogen uptake of PCN-6 is 6.7 wt % at 77 K/50 bar. Inelastic neutron scattering (INS) studies reveal that the interaction is found to be substantially stronger in catenated PCN-6 than in noncatenated PCN-6'. This provides information that catenation leads to increase in volumetric hydrogen uptake and strengthens the MOF-H ₂ interaction. (Status – 100% complete)
Nov-10	Milestone: Construct MOFs containing mesocavities with microwindows may serve as a general approach towards stable MOFs with higher and higher surface areas. Incorporation of entatic-state metal sites into the high surface area MOFs. Design and synthesize porous polymer networks (PPNs) for hydrogen storage with high surface area, tunable pore size, and flexibility. Determine H ₂ adsorption of PPNs with metal incorporation. (Status – 90% complete)
Nov-11	Milestone: Construct PPNs with ultrahigh surface area (finished). Explore the possibility of incorporation of charge and additional light metal ions such as Li ⁺ , Na ⁺ or Mg ²⁺ into PPN-4. The modified PPN-4 should have improved hydrogen affinity and improved volumetric hydrogen uptake due to the increased density. (Status – underway)

Approach

Enhance H₂ uptake

- Framework functionalization
- Framework postsynthetic modification

ST018

- Introduce charge-separation
- Introduce metal ions

New Achievements

- Air and moisture stable PPNs with ultra-high surface area (BET SA: 6470 m²/g, new record)
- Excess gravimetric H₂ uptake of 8.5 wt% (new benchmark validated by SWRI[®])
- Metal-incorporated PPNs with 8.0 kJ/mol isosteric heats of H₂ adsorption for PPNs
- Introduction of chargeseparation into MOFs
- Introduction of different functional groups and large cavities into MOFs for metalincorporation

Organic Ligands with functional groups

PCN-103(N,O,Ch)

PCN-103x are isostructural with MOF-177

The $-NH_2$ and -OH groups can be used as anchors for additional metal ions.

Gas adsorption of PCN-103

At 77 K, the saturated excess gravimetric H_2 uptake of PCN-103(N) is 5.6 wt % at 40 bar; PCN-103(O) is 5.4 wt % at 45 bar; PCN-103(Ch) is 5.1 wt% at 50 bar. The functional groups exert a weak influence to H_2 uptake.

Introduce charge-separation into MOF (PCN-35)

ST018

Rationale:

Charge separation will form a electrostatic field inside of MOFs, which may induce polarization of dihydrogen and enhance the interaction of dihydrogen with MOFs.

Heats of adsorption and High pressure measurements are underway.

Porous materials stable in air and moisture for H₂ storage

Si, Admantane, P⁺, B⁻, etc.

Stability is an important factor for H_2 storage in application.

Porous Polymer Networks (PPNs) with Ultra-high Surface Area

Advantages:

- Stability toward air and moisture
- Robust for postsynthetic modification

Diamond-type net

The framework of PPN-4 is constructed and optimized by using the Forcite Plus module in Material Studio.

Porosity and Stability Tests of PPN-4(Si)

PPN-4(Si) has ultrahigh surface area ($S_{BET} = 6470 \text{ m}^2/\text{g}$) and is very stable. The N₂ isotherms for PPN-4(Si) has mixed type-I and type-IV sorption behavior, which is typical for materials with both micropores and mesopores. This surface area is one of the highest reported to date for any porous material, which is larger than MOF-210 ($S_{BET} = 6240 \text{ m}^2/\text{g}$, $S_{Langmuir} = 10400 \text{ m}^2/\text{g}$) (*Science* **2010**, 329, 424) or NU-100 (or PCN-610, $S_{BET} = 6143 \text{ m}^2/\text{g}$) (*Nature Chem.*, **2010**, 2, 944.).

Porosity of PPN-4 (Simulated vs. Experimental)

Material	Density (Cal.) g/cm ³	Unit Cell	Pore volume cm ³ /g	SA (Cal.) m²/g	SA (Exp.) m²/g
PPN-4(C)	0.325	I-42d $C_{100}H_{64}$ a = b = 15.4818 Å c = 26.9655 Å V = 6463.24 Å ³	2.46	6173	4130
PPN-4(Si)	0.284	I-42d C ₉₆ H ₆₄ Si ₄ a = b = 17.0578 Å c = 26.6865 Å V = 7764.97 Å ³	2.90	6530	6470
PPN-4(Ge)	0.310	I-42d C ₉₆ H ₆₄ Ge ₄ a = b = 17.4114 Å c = 26.6453 Å V = 8077.68 Å ³	2.67	5881	4230
PPN-4(Sn)*	0.313	I-42d C ₉₆ H ₆₄ Sn ₄ a = b = 18.3602 Å c = 26.5982 Å V = 8966.21 Å ³	2.69	5557	N.A.
PPN-4(ADA)	0.196	I-42d C ₁₃₆ H ₁₁₂ a = b = 21.5513 Å c = 31.8504 Å V = 14793.2 Å ³	4.48	6940	3000

* Except PNN-4(Sn), all the PPN materials have been synthesized.

SWRI® Hydrogen adsorption data for PPN-4(Si)

>At 77 K, the maximum Gibbs-excess concentration was 8.5 wt.% at 60.4 bar, higher than that of MOF-177.

Compressed PPN-4(Si) kept its surface area and gravimetric uptake. The volumetric uptake doubles when volume is reduced to a half.

Functionalized PPNs for H₂ Adsorption

PPN-4(C) is the same type of material as PPN-4(Si). PPN-4(C) can be postsynthetic modified and metal Li⁺ incorporation has been performed. Though the experimental BET surface area (4023 m²/g) decreased, the H₂ isosteric heat of adsorption increased. 14

Functionalized PPNs for H₂ Adsorption

Introduction of H⁺ and Li⁺ enhance the interaction of PPNs with H_2

Other metals will be introduced.

Isosteric heats of adsorptionobtained from isotherms at 77 and 87 K. H₂ heat of adsorption has improved by 47% upon postdynthetic modification.

Functionalization of PPN-7 for H₂ Adsorption

PPN-7(NHCH₂COOLi) PPN-7(NHCH₂COOMe)

Strategy: Direct introduction of metal ions in PPNs

Functionalized PPNs for H₂ Adsorption

The incorportation of H⁺ and Li⁺ enhanced H₂ uptake and the interaction of PPNs with H₂

Isosteric heats of adsorption obtained from isotherms at 77 and 87 K.

Metal-incorporation has lead to blocked cavities. A prerequisite for metal incorporation is to make porous materials with large cavities.

MOF with Large Cavity (PCN-21)

Gas Adsorption of PCN-21

PCN-21 possesses permanent porosity and exihibits stepwise N_2 sorption isotherms.

At 77 K and 1 bar, PCN-21 can adsorb 1.6 wt% H_2 gas.

Other MOFs with Large Cavity (PCN-69)

Metal incorporation is underway!

Collaborations

Partners

- Dept. of Chem. Eng., TAMU, Theoretical Calculation
- KIT, Germany, Ligand Synthesis
- SWRI[®], Gas adsorption measurements
- LLNL, Critical Point Activation
- ANL, APS, Crystal Structure Determination
- ➢ GM, High pressure Gas Adsorption Measurements

Technology Transfer

- Working with industrial partners closely
- Ready to work with the Engineering CoE
- Working with a start-up company

Accomplishments

Demonstrated through experiments that :

- PPNs with ultra-high surface area have been designed and synthesized. PPN-4(Si) has record high BET surface area of 6470 m² g⁻¹ and Langmuir surface area of 10380 m² g⁻¹. The gravimetric excess hydrogen uptake of PPN-4(Si) was 8.5 wt% at 77 K and 60.4 bar. This material is stable in air and moisture and can be compressed without losing its porosity
- Functional MOFs (PCN-103) based on MOF-177 for metal ion incorporation were constructed, which possess BET surface area of over 4100 m²/g and hydrogen uptake capacity of 5.6 wt% at 77 K
- MOFs containing mesocavities with microwindows tend to have high surface area and stability. PCN-69 with a Langmuir surface area of 6268 m²/g and high hydrogen uptake capacity of 5.20 wt% at 77K and 50 bar has been obtained
- PPN postsynthetic modification and metal incorporation were performed

Future Work

- Further enhancement of H₂-MOF interaction by incorporation of coordinatively unsaturated metal ions and neutral metal atoms
- Preparation of MOFs with high surface area and functional groups for metal incorporation
- Preparation of PPNs containing active metal atoms or metal ions
- Show that metal incorporation improves the heat of hydrogenadsorption significantly. Achieve a heat of hydrogenadsorption significantly higher than those of traditional adsorptive materials
- Discover a MOF with high surface area, high hydrogenaffinity, and high volumetric capacity, keeping in mind the DOE 2015 goal of system gravimetric capacity of 0.055 Kg H₂/Kg and volumetric capacity of 0.040 Kg H₂/L

Summary Table

	ΔH_{ads}	H ₂ Adsorption Uptake				
Material	(kJ/mol)	Gravimetric (wt%)	Volumetric (g/L)	T (K)	P (bar)	
PCN-26	6.81	2.86	24.7	77	32	
PCN-69	8.14	5.20	19.5	77	50	
PCN-103(N)	6.60	5.60	25.6	77	40	
PCN-103(O)	-	5.40	24.6	77	45	
PCN-103(Ch)	-	5.10	26.0	77	50	
PCN-80	5.20	4.80	29.0	77	44	
PCN-46	7.20	5.31	32.3	77	32	
PPN-4(Si)	4.63	8.5	*28.0 X 2	77	60.4	