

Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage

P. Pfeifer¹, C. Wexler¹, G. Suppes², F. Hawthorne^{1,3,4}, S. Jalisatgi⁴, M. Lee⁴, D. Robertson^{3,5}

¹Dept. of Physics, ²Dept. of Chemical Engineering, ³Dept. of Chemistry, ⁴Dept. of Radiology, ⁵University of Missouri Research Reactor

University of Missouri, Columbia, MO 65211

P. Buckley, J. Clement

Midwest Research Institute, Kansas City, MO 64110

2011 DOE Hydrogen Program Annual Merit Review, May 9-13, 2011, Arlington, VA

Project ID #ST019

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: September 1, 2008
- Project end date: January 31, 2013
- Percent complete: 60%

Budget

- Total project funding:
 - DOE share: \$1,899K
 - Contractor share: \$514K

Funding for FY 2010

- DOE share: \$350K
- Contractor share: \$227K

• Funding for FY 2011

- DOE share: \$314K (est)
- Contractor share: \$152K (est)

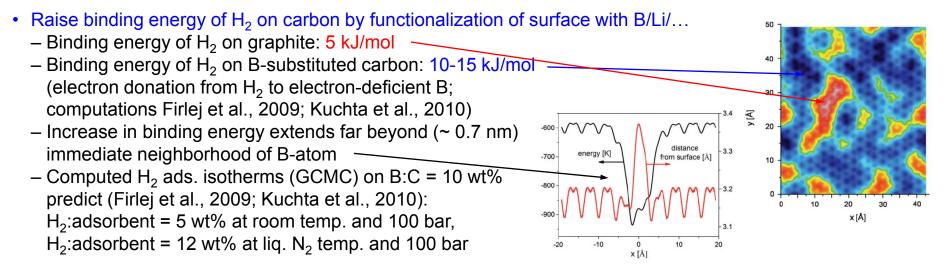
Barriers

Barriers addressed:

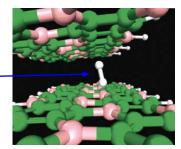
- System weight and volume
- System cost
- Charging/discharging rates
- Thermal management
- Lack of understanding of hydrogen physisorption and chemisorption

Partners

Interactions/collaborations:


- L. Simpson, P. Parilla, K. O'Neill-NREL
- J. Ilavsky—Advanced Photon Source, ANL
- Y. Liu, C. Brown, J. Burress-NIST
- L. Firlej—U. Montpellier II, France
- B. Kuchta—U. Marseille, France
- S. Roszak—Wroclaw U. Technology, Poland
- P. Yu—U. Missouri
- H. Taub-U. Missouri
- M. Stone—ORNL
- P. Llewellyn—U. Marseille, France 2

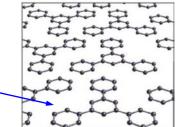
Objectives & Relevance

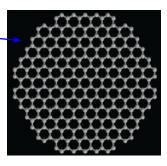

Overall

- Fabricate high-surface-area, multiply surface-functionalized nanoporous carbon, from corncob and other precursors, for reversible H₂ storage (physisorption) with superior storage capacity
- Characterize materials & demonstrate storage performance
- Determine pore-space architecture, nature of functionalized sites, H₂ sorption isotherms (1-200 bar), isosteric heats, and kinetics, at 77-300 K
- Establish effectiveness of boron functionalization by deposition and pyrolysis of (i) decaborane (B₁₀H₁₄) and (ii) BCl₃ (May/2010-March/2011)
- 3) Establish B-C bonds in B-functionalized materials (May/2010-March/2011)
- 4) Establish enhanced adsorption of H_2 on B-functionalized carbon (May/2010-March/2011)
- 5) Use inelastic neutron scattering to probe sub-nm pores (May/2010-March/2011)
- Validate isosteric heats obtained from adsorption isotherms by direct microcalorimetry (May/2010-March/2011)
- Develop computational predictions of the effect of graphene edges on H₂ adsorption (May/2010-March/2011)
- Optimize pore architecture and composition
- 1) Establish optimal precursors for H₂ storage as function of KOH:C ratio and activation temperature (May/2010-March/2011)
- 2) Compare B-functionalized carbons produced by different synthetic methods
- 3) Fabricate monoliths of optimized B-functionalized carbons; determine storage capacities and charge/discharge kinetics under conditions comparable to an on-board H₂ tank

Approach—I

- U. Missouri: (1) Produce high-surface-area carbon (~ 3000 m²/g), (2) Dope surface with B (> 2000 m²/g) Other groups: (1) Pyrolyze C-B copolymers or synthesize B-substituted carbon scaffolds bottom-up; (2) Maximize surface area (~ 900 m²g)
 - Reach all surface by using volatile boron carrier
 - Deposit boron by physical vapor deposition & thermolysis of $B_{10}H_{14}$
 - Deposit boron by chemical vapor deposition of BCl₃ (~ 900 °C); BCl₃ reactant for synthesis of BC₃, a candidate for H₂ intercalation (Cooper et al., 2009, 2010)
 - Incorporate B into carbon lattice by thermal annealing
- Create nanopores (closely spaced stacks of graphene sheets) In narrow pores (<1 nm), adsorption potentials overlap and create deep energy wells, with binding energy up to 2 times of that in wide pores:
 - Binding energy in 0.7-nm boron-free pore: ~ 9 kJ/mol
 - Binding energy in 0.7-nm B-doped pore: ~ 18-27 kJ/mol

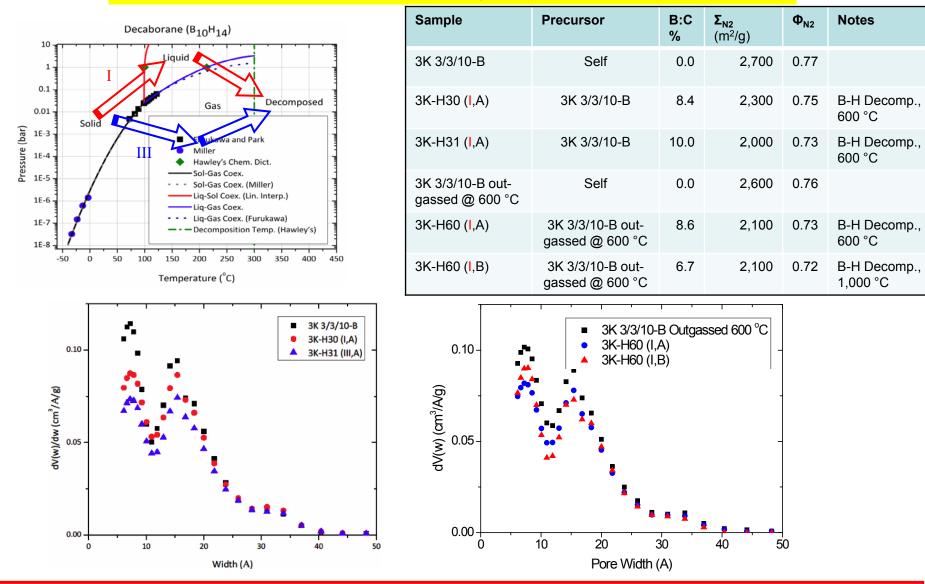

Approach—II


- Increase surface area of carbon beyond 3000 m²/g (large single graphene sheet)
 - Use B-substituted carbon to create additional surface area by boron neutron capture (BNC); fission into Li and alpha particle,

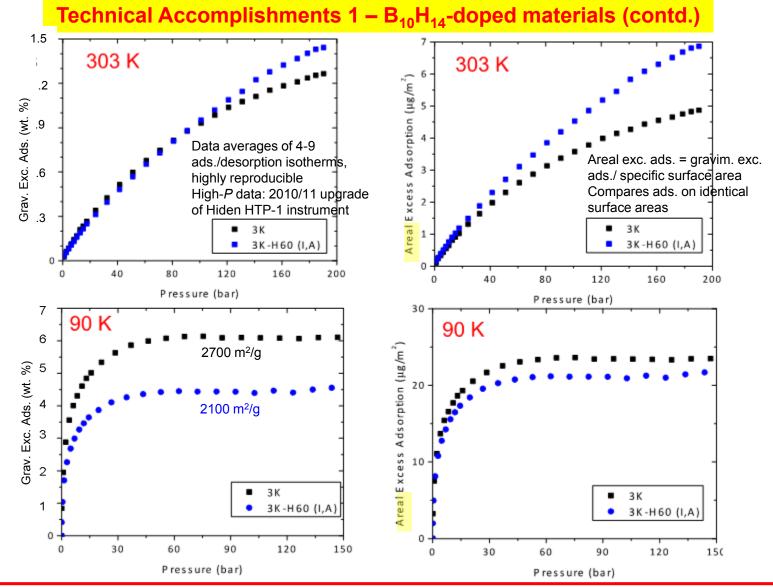
 ^{10}B + $^{1}\text{n} \rightarrow [^{11}\text{B}] \rightarrow ^{7}\text{Li}$ + ^{4}He + γ + 2.4 MeV

(U. Missouri Research Reactor); and etching of fission tracks Physical realization of Chae et al. (2004): "excision of 6-membered rings" For BNC: optimum track width ~ 1 nm For BNC: max. surf. area ~ 6000 m²/g

- Chemical realization of "excision of 6-membered rings" by KOH activation with large KOH:C ratio: small graphene sheets with large ratio of edge sites to in-plane sites
- Simulate H₂ adsorption (GCMC) on non-traditional surface geometries (edge sites, pore walls punctured by tranverse channels, ...)
 - Objective 1: Extract pore widths and binding energies from exp. H_2 isotherms
 - Objective 2: Identify conditions under which multilayer adsorption is significant
 - Objective 3: Identify contributions to H₂ adsorption from in-plane sites and edge sites
 - Objective 4: Determine film volume for correct determination of isosteric heat from Clausius-Clapeyron equation (Olsen et al, 2011)
 - Objective 5: Determine density of saturated film, $\rho_{\text{film}}(T)$, as function of temp. and surface geometry; compare with exp. densities; find surface geometries/chemistries that give high $\rho_{\text{film}}(T)$ and E_{B}
- Manufacture monoliths of B-doped carbon for conformable, lightweight tank
 - Minimizes wide pores; minimizes tank volume
 - Low pressure, 100 bar, enables conformable tank design
 - High binding energy, 15 kJ/mol, enables storage at room temp.



Approach—III: Tasks (revised)


Task	Progress Notes	% Comp	
1. Fabricate functionalized carbons			
Fabricate B-doped materials by vapor deposition & thermolysis of decaborane	Production in O_2 -free environment achieved. Samples characterized. Increase in excess adsorption observed. Pending: chemical pathways and optimization		
Fabricate B-doped materials by vapor deposition & thermolysis of BCl ₃	Production with B:C = 2 wt% achieved. Pending: sample characterization; chemical pathways; optimization	30%	
Creation of fission tracks by boron neutron capture (BNC)	Fission tracks created at U. Missouri Research Reactor	80%	
Creation of new surface area by etching of fission tracks	Etching of fission tracks performed with hydrogen peroxide. Gave no increase in surface area. Pending: high-T steam oxidation (on hold)	70%	
Manufacturing of monoliths	Boron-free monoliths manufactured and tested. <i>Gravim. storage capacity comparable to best powders. Volum. capacity better than powders</i>	50%	
2. Fabricate hybrid materials	No longer under consideration (HSCoE assessment of spillover effect not conclusive)	0%	
3. Characterize and optimize materials/H ₂ storage performance			
Map pore space by SAXS, N_2 adsorption, H_2 isotherms, SEM/TEM,	SAXS methodology complete, new sample characterization via SAXS now standard (shape, width, length, wall thickness, porosity), applied to numerous samples. N ₂ BET and PSD routine. Incoherent inelastic neutron scattering theory and experiments. <i>FTIR observation of B-C bonds</i>	75%	
Predict H_2 isotherms in pure-C and B-substituted materials, and compare with experimental isotherms.	GCMC and MD simulations of H_2 isotherms in good agreement with experiments. QC computations of H_2 binding energies for B-doped C. Significance of edge adsorption determined	75%	
Measure H_2 binding energies from adsorption isotherms and microcalorimetry	Highest excess adsorption for B-doped sample produced under O ₂ -free conditions. Developed method for isosteric heat determination at high and low coverage. Validated by microcalorimetric measurements	70%	
Compare different methods of B functionalization	Best result (highest excess adsorption) achieved on sample B-doped with decaborane under O ₂ -free conditions	70%	
Optimize gravimetric & volumetric storage capacities	Analyzed performance of compacted powders under mechanical pressure vs. monoliths. <i>Compacted powders not competitive</i>	80%	
Design test vessel for monoliths	Not started, as directed by DOE Program Management. Test vessel for operation at room temp. & O_2 -conditions exists from another project	100%	
4. Characterize and optimize monoliths			
Construct test vessel for monoliths	Not started, as directed by DOE Program Management. Test vessel for operation at room temp. & O_2 -conditions exists from another project	100%	
Instrument for B-doping of monoliths with decaborane	Design complete. Pending: construction and deployment	30%	
Validate and optimize B-doped monoliths	Not started, as directed by DOE Program Management	0%	

- Validation of H₂ isotherms in independent labs (MU, NREL, "Blind"): reproducibility ~ 5%
- B-doping & neutron irradiation, fission tracks
- B-doping raised average binding energy to 9-11 kJ/mol (B:C = 1.4 wt%)
- Found unexpected variations of exp. saturated-film densities and pressure at which excess adsorption has local maximum
- Theory of isosteric heats at all coverages: concluded that *absolute adsorption* must be used.
- Ab initio + GCMC results for B-substituted carbon
- Excess adsorption at 80 K and 303 K for a large "library" of samples
- Structural characterization of samples: SAXS & TEM

Technical Accomplishments 1 – B₁₀H₁₄-doped materials (O₂-free)

- Achieved B:C = 10% (Method I), but at a cost of some pore blockage (surface area ~ 2000 m²/g).
- For B:C = 10 wt% w/o blocking, it is necessary to apply Method III multiple times.
- Apparatus for automated doping with B₁₀H₁₄ under construction (MRI).

- For B:C = 8.6 wt%: areal excess adsorption at 303 K & 200 bar 30% higher than on undoped material
- Increase in areal excess adsorption at high *T* & *P* indicates increase in average binding energy, not just highest binding energy (increased binding energy in large pores, consistent with liquid B₁₀H₁₄ doping). Increase not observed at 90 K because unblocked pores in undoped material support H₂ multilayers, not available in doped material
 O free conditions grueial for increased add, on P doped comple (no increase observed with O + 2010 Report)
- O₂-free conditions crucial for increased ads. on B-doped sample (no increase observed with O₂; 2010 Report)

- Ground corncob is soaked with phosphoric acid and charred at 480°C under nitrogen.
- The activation mechanism by potassium hydroxide is a complicated process and consists of several simultaneous/consecutive chemical reactions.

$2KOH \rightarrow K_2O + H_2O$	
$C + H_2 O \rightarrow CO + H_2$	
$CO + H_2O \rightarrow CO_2 + H_2$	

 $CO_2 + K_2O \rightarrow K_2CO_3$

Activation mechanism (dehydration) (water - gas reaction) (water - gas shift reaction)

(carbonate formation)

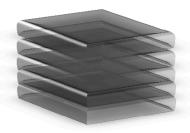
Above 700°C

$$K_2O + H_2 \rightarrow 2K + H_2O$$

 $K_2O + C \rightarrow 2K + CO$

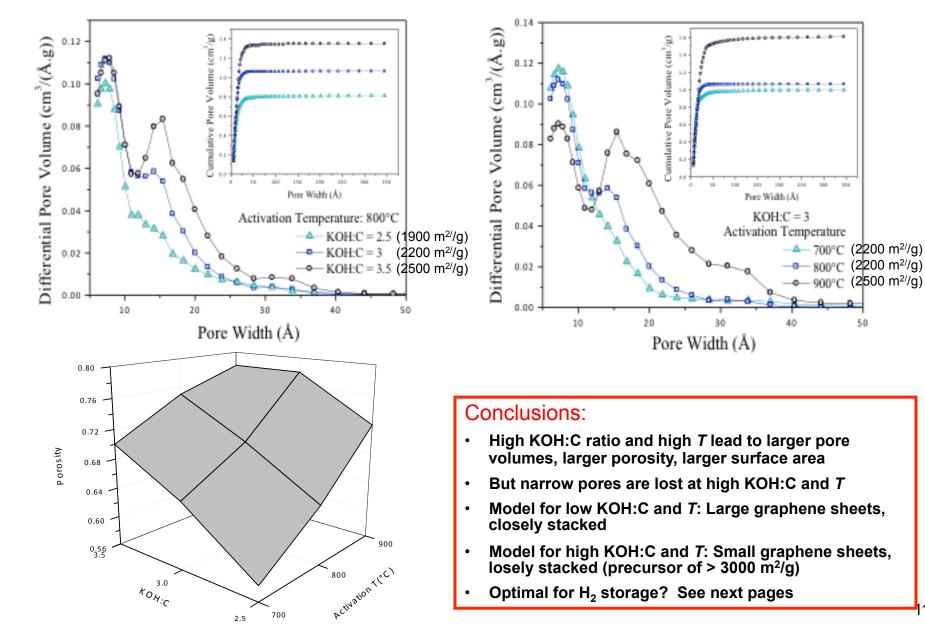
Consumption of carbon by oxygen producing carbon monoxide and carbon dioxide

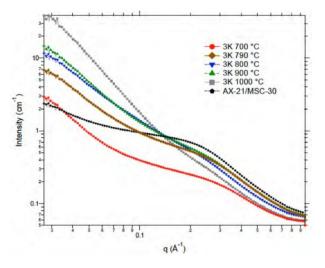
- <u>Penetration of metallic potassium into the</u> <u>graphitic lattice</u>
- Expansion of the lattice by the intercalated potassium
- Rapid removal of the intercalate from the carbon sheet

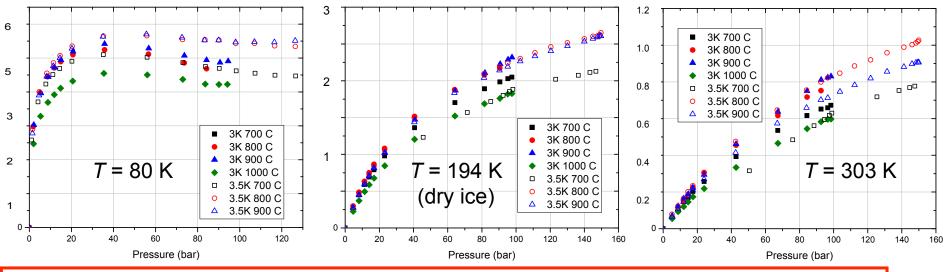

Pore structure is controlled by two fabrication parameters


- 1. Activation temperature
- 2. KOH:C weight ratio

Corncob


(reduction by hydrogen) (reduction by carbon)



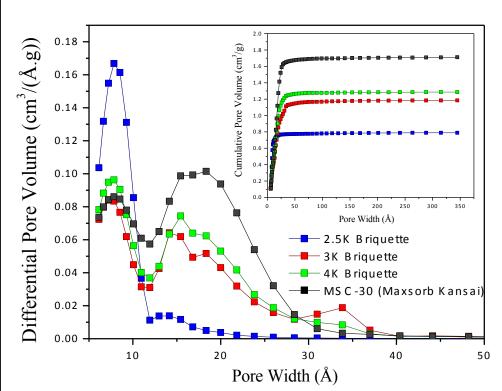

Optimization of precursor pore geometry: activation agent concentration and activation temperature

Small-angle x-ray scattering (SAXS) intensity as a function of the scattering vector, *q*, for samples $3K-700^{\circ}C$, $3K-790^{\circ}C$, $3K-900^{\circ}C$, and $3K-1000^{\circ}C$, and AX-21/MSC-30. Increasing temperature causes an increase of the power-law slope measured at *q* = 0.2 Å⁻¹. A horizontal plateau in this region of the scattering curve signals the presence of well-defined nanopores. The increase in the power-law slope indicates the destruction of this network.

Gravimetric excess adsorption (wt.%):

Conclusions:

• Optimized gravim. excess adsorption for undoped carbons (table next page): Sample 3.5K 800 C consistently outperforms others; ideal balance between large cumulative pore volume and existence of narrow pores.

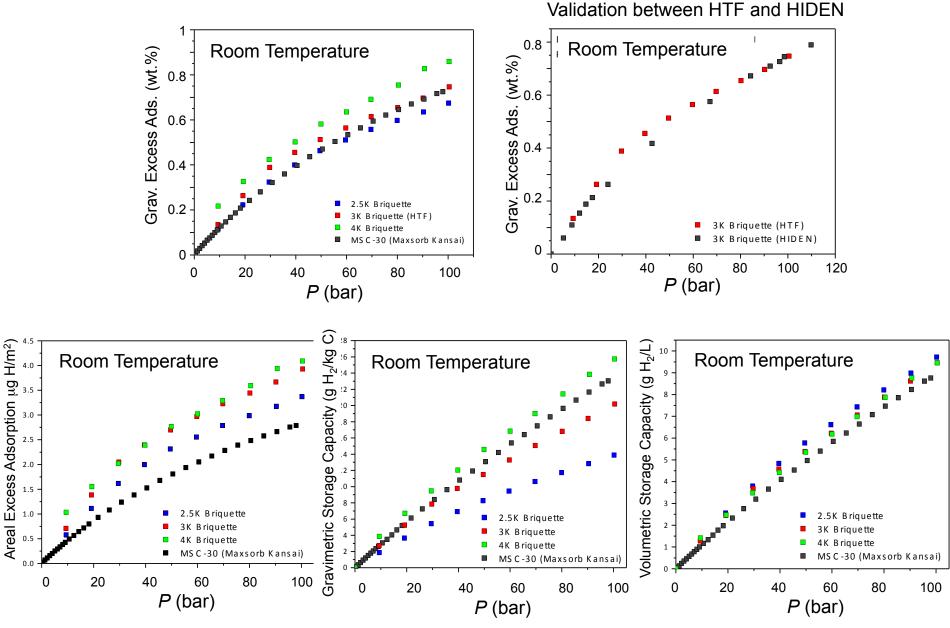

Sample	Σ_{N2} (m²/g)	Φ _{N2}	Grav. Exc. Ads. 100 bar, 303 K (wt. %)	Grav. Exc. Ads. 100 bar, 194 K (g/kg)	Grav. Exc. Ads. 100 bar, 80 K (g/kg)
2.5K 800 °C	1900	0.69	0.53	1.62	N/A
3K 700 °C	2200	0.65	0.67	2.01	N/A
3K 800 °C	2200	0.78	0.74	2.12	4.47
3K 900 °C	2500	0.78	0.82	2.28	4.68
3K 1000 °C	2000	0.78	0.60	1.80	4.05
3.5K 700 °C	2000	0.70	0.63	1.85	4.42
3.5K 800 °C	2500	0.75	0.84	2.18	5.15
3.5K 900 °C	2500	0.78	0.70	2.14	5.18
4K 800 °C	2600	0.81	0.56	N/A	5.02
5K 790 °C	3200	0.81	0.65	N/A	4.03

Summary of undoped carbons. Gravimetric excess adsorption at 100 bar. Best performances are highlighted in yellow.

Technical Accomplishments 3 – Powders vs. Monoliths (Briquettes)

	From nitrogen	isotherms	Macroscopic 1		
Sample	Intragranular density (g/cm ³)	Intragranular porosity	Bulk density (g/cm ³)	Bulk porosity	BET surface area (m ² /g)
MSC-30	0.42	0.79	NA	NA	2600
2.5K Briquette (30% binder)	0.74	0.63	0.70	0.65	2000
3K Briquette (25% binder)	0.56	0.72	0.47	0.77	1900
4K Briquette (25% binder)	0.53	0.74	0.37	0.81	2100

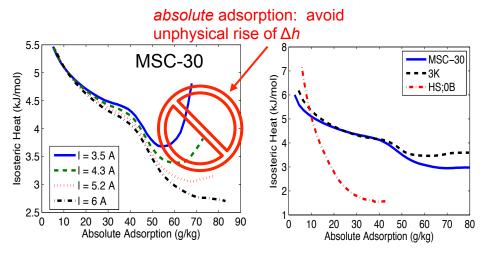
Powdered activated carbon is pressed into briquettes at 1000 bar using PVDC as a chemical binder. The volume concentration of PVDC is 25-30%.



0.5-liter Hydrogen Test Fixture (HTF, Sievert apparatus, room temp.)

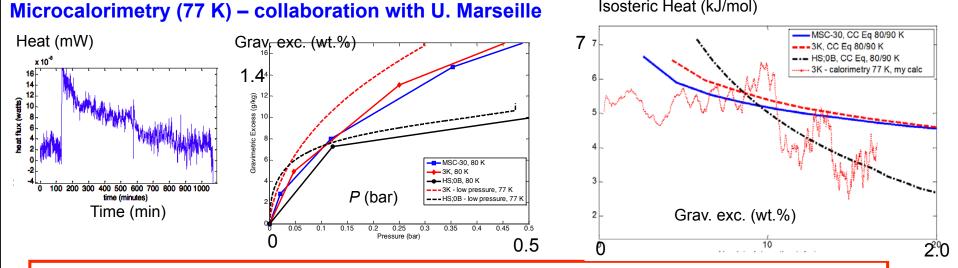
10-liter sorbentbased hydrogen tank (dry-ice temp., room temp.)

All briquette data measured on HTF, unless otherwise indicated


Technical Accomplishments 3 – Powders vs. Monoliths (contd.)

Sample	BET surface area (m²/g)	Intragranular density (g/cm³)	Intragranular porosity	Room Temp. Grav. Excess Adsorption (100 bar) (g/kg)	Room Temp. Grav. Storage Capacity (100 bar) (g/kg)	Room Temp. Vol. Storage (100 bar) (g/L)
2.5K powder	1900	0.62	0.69	5.3	13.2	8.2
3K powder	2600	0.44	0.78	9.3	21.8	9.6
4K powder	2600	0.38	0.81	5.6	20.6	7.8
MSC-30	2600	0.42	0.79	7.2	23.0	8.8
2.5K Briquette (30% binder)	2000	0.74	0.63	6.7	13.9	9.7
3K Briquette (25% binder)	1900	0.56	0.72	7.5	20.2	9.5
4K Briquette (25% binder)	2100	0.53	0.74	8.6	25.7	9.5

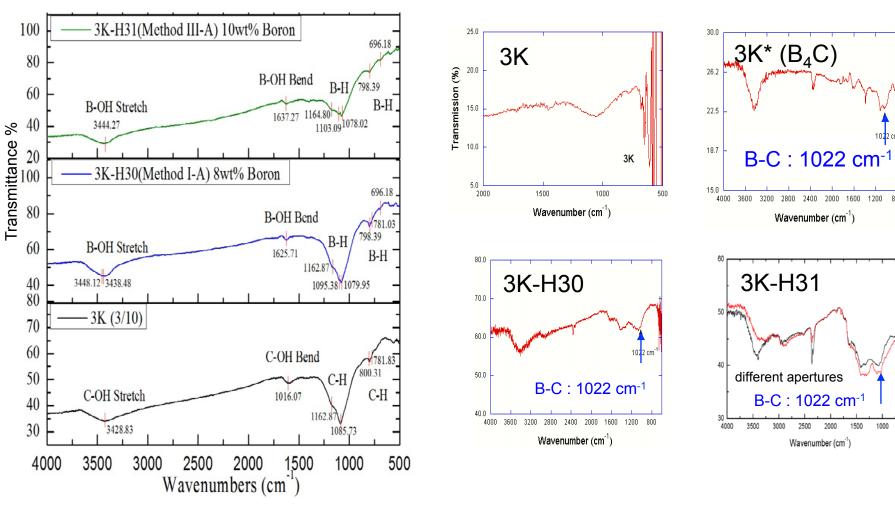
- Carbon made from PVDC improves hydrogen uptake at room temperature (HS;0B, 2010 Report). [measurements on 0.5-liter HTF validated on Hiden HTP-1 instrument]
- Briquettes outperform most powder samples in terms of volumetric storage capacity because low porosity gives high volumetric storage capacity. 2.5K briquette has only sub-nm pores and gives highest volumetric storage capacity, 9.7 g H₂/liter C at 300 K & 100 bar
- All briquettes outperform MSC-30 at room temperature in terms of <u>volumetric storage capacity</u> and <u>areal excess</u> <u>adsorption</u>. 4K briquette outperforms MSC-30 in terms of <u>gravimetric storage capacity</u>
- The performance of several briquettes is explained by the pore size distribution (previous slide)
- Large samples, on 0.5-liter HTF, lead to less dependence on sample inhomogeneity
- 10-liter tank: will permit studies of flow rates, thermal management, and operation at dry ice temperature (194 K)


Technical Accomplishments 4 – Isosteric Heat Measurements

"Best methods" for determination of isosteric heats: experimental determination of film thickness

sample	type	/ (Å)	m_e/Σ (μg/ m²)	Δh (kJ/ mol)
MSC-30	AC	5.4	19.6	6.0-3.0
ЗК	AC	5.1	21.0	6.2-3.6
HS;0B	PVDC	5.3	52.8	7.2-1.6
Li+Wu(2009)	Zeolite NaX		29.3	4.1-?
Saha (2008)	MOF-177		33.6	4.0-0.5
Saha (2009)	MOF-5		28.1	2.6-2.1

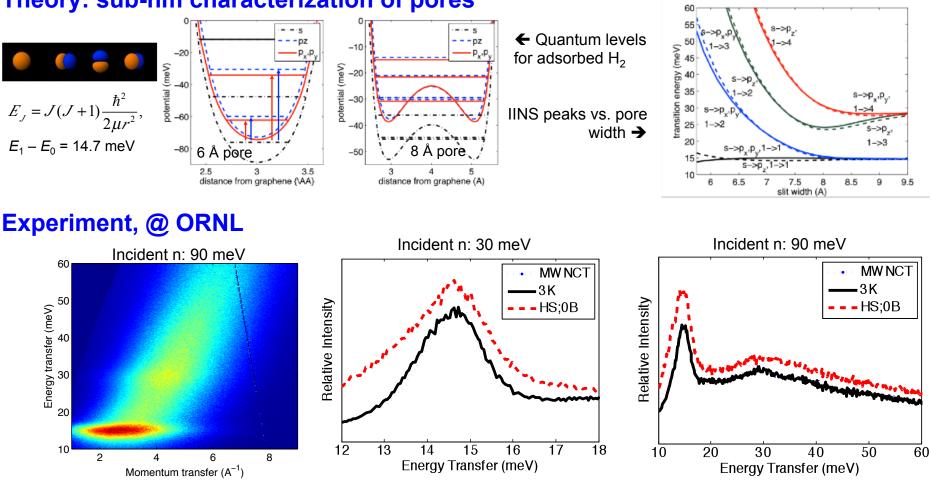
Isosteric Heat (kJ/mol)



- Thermodynamic requirement $\partial \Delta h / \partial m_{abs} \leq 0$ gives lower bound for film thickness I (exp. film thickness, agrees well with simulations)
- Isosteric heats from Clausius-Clapeyron in good agreement with microcalorimetric values
- Δh from absolute adsorption isotherms works to high P (coverage), microcalorimetry only up to 0.5 bar

Technical Accomplishments 5 – Observation of B-C bonds by FT-IR

Conventional FTIR method cannot recognize the difference of 3K, 3H30, and 3K-H31 at 1020 cm⁻¹ of B-C bond.

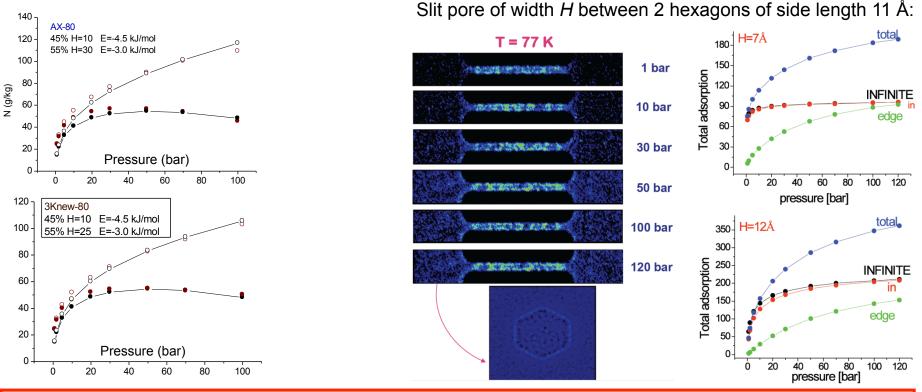

With small apertures, the B-C bond is evident

Conclusions:

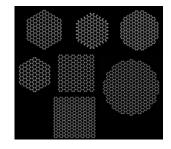
- FTIR observation of line at 1022 cm⁻¹ characteristic of B-C bonds
- First time that the existence of B-C bonds in boron-doped carbons (vapor deposition) has been observed

500

Theory: sub-nm characterization of pores


- IINS is capable of probing both energy levels and guantum states of adsorbed H₂ directly.
- Experimentally observed 1st rotational transition ($E_1 E_0$) at 14.7 meV and roto-vibrational peak at 29.5 meV (combination of rotational transition and quantum levels in adsorption potential).
- Shows potential for sub-nm pore characterization (alternative to N₂, NMR, ...)
- Broadening of peaks: in-plane recoil + coupling to phonon modes (still needs analysis)

Technical Accomplishments 7 – GCMC Simulations on Non-Traditional Pore Geometries


Search for (a) best representation of experimental isotherms (pore structure & energetics from H_2 ads.); (b) pore structures with max. H_2 storage capacity

- Input: 1. Pore size distribution
 - 2. Pore shape & lateral dimensions
 - 3. Adsorption (binding) energy

Infinite slit pores, with 2 widths & 2 energies:

- Simultaneous fit of excess ads. & gravim. storage cap. (left panels) constrains pore widths & energies effectively
- In finite slit pore, edge ads. ~ in-plane ads.; doubles gravim. storage cap. relative to infinite pore (right panels) Reason: at edge, there is a large region where ads. Is weaker than in slit, but strong enough to hold H₂ significantly

Collaborations

- Midwest Research Institute (Private Sector): Subcontractor for design and construction of instrument for large-scale, automated B-doping (B-doped monoliths)
- NREL (Federal): Validation of H₂ uptake data. [L. Simpson, P. Parilla, K. O'Neill]
- Advanced Photon Source/ANL (Federal): Collaboration with J. Ilavsky for Ultra-small-angle x-ray scattering studies of samples under General User Program (GUP-10069, GUP-20661).
- **NIST** (Federal): Collaboration with Y. Liu, G. Brown, and J. Burress on small-angle neutron scattering experiments on samples loaded with H₂, including density correlations of nonadsorbed H₂.
- U. Montpellier II and U. Marseille, France (Academic): Collaboration with L. Firlej and B. Kuchta to perform GCMC simulations.
- Wroclaw U. Technology, Poland (Academic): Collaboration with S. Roszak for adsorption potentials for H₂ sorption on B-doped materials from ab initio quantum-chemical computations.
- **ORNL** (Federal): Collaboration with M. Stone, use of beamtime for incoherent inelastic neutron scattering off H₂ adsorbed in nanoporous carbon.
- **U. Provence**, France (Academic): Collaboration with P. Llewellyn for microcalorimetric determination of isosteric heat of adsorption (H₂ adsorbed in nanoporous carbon).
- **U. Missouri** (Academic): Collaboration with P. Yu to perform FTIR experiments on B-doped carbon. Collaboration with H. Taub to analyze IINS experiments.

Future Work: Plans for 2011/12

- Materials development and characterization:
 - Continue production of B-doped samples (B₁₀H₁₄) under O₂-free conditions; investigate chemical pathways during pyrolysis of B₁₀H₁₄ and annealing (mass spectroscopy of decomposition products) and effects on H₂ storage; optimize pathway of vapor/liquid deposition of B₁₀H₁₄ based on phase diagram of B₁₀H₁₄; raise surface area of doped samples by removal of B via high-temperature reaction with H₂; optimize annealing
 - Measure FTIR spectra of B-doped samples systematically; find number of B-C bonds per surface area
 - Characterize B-doped materials produced from BCl₃ and compare with B-doping from B₁₀H₁₄
 - Determine isosteric heats of B-doped samples at low/high coverage and low/high temperature from corresponding isotherms (Clausius-Clapeyron; Henry's law). Infer distribution of binding energies from analysis (highest/lowest/average binding energy)
 - Determine experimental film thicknesses/densities from Clausius-Clapeyron and compare with values for saturated films, $\rho_{\text{film}}(T)$, from high-pressure excess adsorption isotherms (2010 Report), and with values from numerical simulations
- Continue development of IINS, SAXS/USAXS, TEM/SEM methods for characterization of nanopores
- Continue numerical simulations to investigate edge adsorption vs. in-plane adsorption in finite slit pores, and compare results with experimental results on carbons activated at high KOH:C and high *T*. Continue simulations to determine pore structures and energetics from experimental H₂ isotherms
- Complete automated B-doping instrument (MRI); use for vapor deposition of B₁₀H₁₄ for B:C = 10 wt%
- Manufacture B-doped monoliths; test in 0.5-liter HTF and 10 liter tank; study flow rate (loading/unloading) and thermal management issues.

Project Summary

- Manufactured B-substituted carbon under O₂-free conditions by thermolysis of $B_{10}H_{14}$, with B:C = 7-10 wt%, without compromising high surface areas ($\geq 2000 \text{ m}^2/\text{g}$)
- Demonstrated that B:C = 8.6 wt% raises areal excess adsorption (independent of surface area) at 303 K and 200 bar by 30% relative to undoped material. Indicates increase in *average* binding energy, not solely highest binding energy
- Optimized pore geometry of undoped carbons. Determined that low KOH:C and *T* give large, closely stacked "graphene sheets"; and high KOH:C and *T* give small, loosely stacked "sheets". Optimum geometry: KOH:C = 3.5 and *T* = 800 °C; best balance between large fraction of narrow pores and large cumulative pore volume
- Compared monoliths vs. powders (undoped). All briquettes outperform MSC-30 at 300 K in terms of areal excess adsorption (~ average binding energy) and volumetric storage capacity. Best monolith gave 10 g H₂/liter C at 300 K & 100 bar
- Developed method to determine experimental thicknesses of H₂ films from Clausius-Clapeyron analysis of absolute adsorption isotherms. Agree well with simulations. Validated isosteric heats from absolute adsorption isotherms by microcalorimetric measurements.
- Established existence of B-C bonds in B-doped carbons, made from B₁₀H₁₄, using FTIR spectroscopy.
- Conducted inelastic neutron scattering experiment to observe rotational-vibrational transition in H₂ adsorbed in sub-nm carbon pores. Proof-of-concept for sub-nm pore characterization.
- In simulations of H₂ adsorption in finite slit pores, found large contributions from edge sites: edge adsorption comparable to in-plane adsorption; doubles gravimetric storage capacity relative to infinite pores