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Overview

Timeline
• Project start date:

September 1, 2008
• Project end date: 

January 31, 2013
• Percent complete: 60%

Barriers
Barriers addressed:

– System weight and volume
– System cost
– Charging/discharging rates
– Thermal management
– Lack of understanding of hydrogen

physisorption and chemisorption  

Budget
• Total project funding:

– DOE share: $1,899K
– Contractor share: $514K

• Funding for FY 2010
– DOE share: $350K
– Contractor share: $227K

• Funding for FY 2011
– DOE share: $314K (est)
– Contractor share: $152K (est)

Partners

Interactions/collaborations:
• L. Simpson, P. Parilla, K. O’Neill—NREL
• J. Ilavsky—Advanced Photon Source, ANL
• Y. Liu, C. Brown, J. Burress—NIST
• L. Firlej—U. Montpellier II, France
• B. Kuchta—U. Marseille, France
• S. Roszak—Wroclaw U. Technology, Poland
• P. Yu—U. Missouri
• H. Taub—U. Missouri
• M. Stone—ORNL 
• P. Llewellyn—U. Marseille, France 2



Overall
• Fabricate high-surface-area, multiply surface-functionalized nanoporous carbon, from corncob and 

other precursors, for reversible H2 storage (physisorption) with superior storage capacity
• Characterize materials & demonstrate storage performance
1) Determine pore-space architecture, nature of functionalized sites, H2 sorption isotherms (1-200 bar), 

isosteric heats, and kinetics, at 77-300 K
2) Establish effectiveness of boron functionalization by deposition and pyrolysis of (i) decaborane

(B10H14) and (ii) BCl3 (May/2010-March/2011) 
3) Establish B-C bonds in B-functionalized materials (May/2010-March/2011)
4) Establish enhanced adsorption of H2 on B-functionalized carbon (May/2010-March/2011)
5) Use inelastic neutron scattering to probe sub-nm pores (May/2010-March/2011)
6) Validate isosteric heats obtained from adsorption isotherms by direct microcalorimetry (May/2010-

March/2011)
7) Develop computational predictions of the effect of graphene edges on H2 adsorption (May/2010-

March/2011)
• Optimize pore architecture and composition
1) Establish optimal precursors for H2 storage as function of KOH:C ratio and activation temperature 

(May/2010-March/2011)
2) Compare B-functionalized carbons produced by different synthetic methods
3) Fabricate monoliths of optimized B-functionalized carbons; determine storage capacities and 

charge/discharge kinetics under conditions comparable to an on-board H2 tank

Objectives & Relevance
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Approach—I

• Raise binding energy of H2 on carbon by functionalization of surface with B/Li/…
– Binding energy of H2 on graphite: 5 kJ/mol
– Binding energy of H2 on B-substituted carbon: 10-15 kJ/mol

(electron donation from H2 to electron-deficient B;
computations Firlej et al., 2009; Kuchta et al., 2010)

– Increase in binding energy extends far beyond (~ 0.7 nm)
immediate neighborhood of B-atom

– Computed H2 ads. isotherms (GCMC) on B:C = 10 wt%
predict (Firlej et al., 2009; Kuchta et al., 2010):
H2:adsorbent = 5 wt% at room temp. and 100 bar,
H2:adsorbent = 12 wt% at liq. N2 temp. and 100 bar

• U. Missouri: (1) Produce high-surface-area carbon (~ 3000 m2/g), (2) Dope surface with B (> 2000 m2/g)
Other groups: (1) Pyrolyze C-B copolymers or synthesize B-substituted carbon scaffolds bottom-up;
(2) Maximize surface area (~ 900 m2g)
– Reach all surface by using volatile boron carrier
– Deposit boron by physical vapor deposition & thermolysis of B10H14
– Deposit boron by chemical vapor deposition of BCl3 (~ 900 oC);

BCl3 reactant for synthesis of BC3, a candidate for H2 intercalation
(Cooper et al., 2009, 2010)

– Incorporate B into carbon lattice by thermal annealing

• Create nanopores (closely spaced stacks of graphene sheets) 
In narrow pores (<1 nm), adsorption potentials overlap and create deep energy wells, with binding
energy up to 2 times of that in wide pores: 
– Binding energy in 0.7-nm boron-free pore: ~ 9 kJ/mol
– Binding energy in 0.7-nm B-doped pore: ~ 18-27 kJ/mol
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Approach—II

• Increase surface area of carbon beyond 3000 m2/g (large single graphene sheet)
– Use B-substituted carbon to create additional surface area by boron neutron capture (BNC);

fission into Li and alpha particle,
10B + 1n → [11B] → 7Li + 4He + γ + 2.4 MeV
(U. Missouri Research Reactor); and etching of fission tracks
Physical realization of Chae et al. (2004): “excision of 6-membered rings”
For BNC: optimum track width ~ 1 nm
For BNC: max. surf. area ~ 6000 m2/g

– Chemical realization of “excision of 6-membered rings” by KOH activation
with large KOH:C ratio: small graphene sheets with large ratio of edge sites
to in-plane sites

• Simulate H2 adsorption (GCMC) on non-traditional surface geometries (edge sites,
pore walls punctured by tranverse channels, …)
– Objective 1: Extract pore widths and binding energies from exp. H2 isotherms
– Objective 2: Identify conditions under which multilayer adsorption is significant
– Objective 3: Identify contributions to H2 adsorption from in-plane sites and edge sites
– Objective 4: Determine film volume for correct determination of isosteric heat from

Clausius-Clapeyron equation (Olsen et al, 2011)
– Objective 5: Determine density of saturated film, ρfilm(T), as function of temp. and surface geometry;

compare with exp. densities; find surface geometries/chemistries that give high ρfilm(T) and EB

• Manufacture monoliths of B-doped carbon for conformable, lightweight tank 
– Minimizes wide pores; minimizes tank volume 
– Low pressure, 100 bar, enables conformable tank design
– High binding energy, 15 kJ/mol, enables storage at room temp.
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Approach—III: Tasks (revised)
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Technical Accomplishments – Summary of 2010 AMR

• Validation of H2 isotherms in independent labs (MU, NREL, “Blind”): 
reproducibility ~ 5%

• B-doping & neutron irradiation, fission tracks

• B-doping raised average binding energy to 9-11 kJ/mol (B:C = 1.4 wt%)

• Found unexpected variations of exp. saturated-film densities and 
pressure at which excess adsorption has local maximum

• Theory of isosteric heats at all coverages: concluded that absolute 
adsorption must be used.

• Ab initio + GCMC results for B-substituted carbon 

• Excess adsorption at 80 K and 303 K for a large “library” of samples

• Structural characterization of samples: SAXS & TEM
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Technical Accomplishments 1 – B10H14-doped materials (O2-free)

Conclusions:
• Achieved B:C = 10% (Method I), but at a cost of some pore blockage (surface area ~ 2000 m2/g).
• For B:C = 10 wt% w/o blocking, it is necessary to apply Method III multiple times.
• Apparatus for automated doping with B10H14 under construction (MRI).
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Sample Precursor B:C 
%

ΣN2
(m2/g)

ΦN2 Notes

3K 3/3/10-B Self 0.0 2,700 0.77

3K-H30 (I,A) 3K 3/3/10-B 8.4 2,300 0.75 B-H Decomp., 
600 °C

3K-H31 (I,A) 3K 3/3/10-B 10.0 2,000 0.73 B-H Decomp., 
600 °C

3K 3/3/10-B out-
gassed @ 600 °C

Self 0.0 2,600 0.76

3K-H60 (I,A) 3K 3/3/10-B out-
gassed @ 600 °C

8.6 2,100 0.73 B-H Decomp., 
600 °C

3K-H60 (I,B) 3K 3/3/10-B out-
gassed @ 600 °C

6.7 2,100 0.72 B-H Decomp., 
1,000 °C

I
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Technical Accomplishments 1 – B10H14-doped materials (contd.)

Conclusions:
• For B:C = 8.6 wt%: areal excess adsorption at 303 K & 200 bar 30% higher than on undoped material
• Increase in areal excess adsorption at high T & P indicates increase in average binding energy, not just highest binding 

energy (increased binding energy in large pores, consistent with liquid B10H14 doping).  Increase not observed at 90 K 
because unblocked pores in undoped material support H2 multilayers, not available in doped material

• O2-free conditions crucial for increased ads. on B-doped sample (no increase observed with O2; 2010 Report)

Data averages of 4-9 
ads./desorption isotherms, 
highly reproducible
High-P data: 2010/11 upgrade 
of Hiden HTP-1 instrument

Areal exc. ads. = gravim. exc. 
ads./ specific surface area
Compares ads. on identical 
surface areas
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Technical Accomplishments 2 – Optimization of Pore Geometry, Undoped Samples
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Technical Accomplishments 2 – Optimization of Pore Geometry, Undoped Samples (contd.)!
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Conclusions: 
•! High KOH:C ratio and high T lead to larger pore 

volumes, larger porosity, larger surface area 
•! But narrow pores are lost at high KOH:C and T 
•! Model for low KOH:C and T: Large graphene sheets, 

closely stacked 
•! Model for high KOH:C and T: Small graphene sheets, 

losely stacked (precursor of > 3000 m2/g) 
•! Optimal for H2 storage?  See next pages 

Optimization of precursor pore geometry:  activation agent concentration and activation temperature  

(1900 m2//g) 
(2200 m2//g) 
(2500 m2//g) 

(2200 m2//g) 
(2200 m2//g) 
(2500 m2//g) 
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Technical Accomplishments 2 – Optimization of Pore Geometry, Undoped Samples (contd.)!

Conclusions: 
•! Optimized gravim. excess adsorption for undoped carbons (table next page): Sample 3.5K 800 C consistently 

outperforms others; ideal balance between large cumulative pore volume and existence of narrow pores. 

Small-angle x-ray scattering (SAXS) intensity as a 
function of the scattering vector, q, for samples 
3K-700ºC, 3K-790ºC, 3K-900ºC, and 3K-1000ºC, and 
AX-21/MSC-30. Increasing temperature causes an 
increase of the power-law slope measured at q = 0.2 Å–1. 
A horizontal plateau in this region of the scattering curve 
signals the presence of well-defined nanopores. The 
increase in the power-law slope indicates the destruction 
of this network.  
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Technical Accomplishments 2 – Optimization of Pore Geometry, Undoped Samples (contd.)

Summary of undoped carbons.  Gravimetric excess adsorption at 100 bar.  Best 
performances are highlighted in yellow.

Sample ΣN2 (m2/g) ΦN2 Grav. Exc. Ads. 
100 bar, 303 K

(wt. %)

Grav. Exc. Ads. 
100 bar, 194 K

(g/kg)

Grav. Exc. Ads. 
100 bar, 80 K

(g/kg)

2.5K 800 °C 1900 0.69 0.53 1.62 N/A

3K 700 °C 2200 0.65 0.67 2.01 N/A

3K 800 °C 2200 0.78 0.74 2.12 4.47

3K 900 °C 2500 0.78 0.82 2.28 4.68

3K 1000 °C 2000 0.78 0.60 1.80 4.05

3.5K 700 °C 2000 0.70 0.63 1.85 4.42

3.5K 800 °C 2500 0.75 0.84 2.18 5.15

3.5K 900 °C 2500 0.78 0.70 2.14 5.18

4K 800 °C 2600 0.81 0.56 N/A 5.02

5K 790 °C 3200 0.81 0.65 N/A 4.03
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Technical Accomplishments 3 – Powders vs. Monoliths (Briquettes)!
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0.5-liter Hydrogen Test 
Fixture (HTF, Sievert 
apparatus, room 
temp.) 

10-liter sorbent-
based hydrogen tank 
(dry-ice temp., room 

temp.) 

From nitrogen isotherms Macroscopic measurements 

Sample Intragranular 
density (g/cm3) 

Intragranular 
porosity 

Bulk density 
(g/cm3) Bulk porosity BET surface 

area (m2/g) 

MSC-30 0.42 0.79 NA NA 2600 
2.5K Briquette 
(30% binder) 0.74 0.63 0.70 0.65 2000 

3K Briquette 
(25% binder) 0.56 0.72 0.47 0.77 1900 

4K Briquette 
(25% binder) 0.53 0.74 0.37 0.81 2100 

Powdered  activated carbon is 
pressed into briquettes at 
1000 bar using PVDC as a 
chemical binder. The volume 
concentration of PVDC is 
25-30%. 
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Technical Accomplishments 3 – Powders vs. Monoliths (contd.)!
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Technical Accomplishments 3 – Powders vs. Monoliths (contd.)

Conclusions:
• Carbon made from PVDC improves hydrogen uptake at room temperature (HS;0B, 2010 Report).  [measurements 

on 0.5-liter HTF validated on Hiden HTP-1 instrument]

• Briquettes outperform most powder samples in terms of volumetric storage capacity because low porosity gives 
high volumetric storage capacity.  2.5K briquette has only sub-nm pores and gives highest volumetric storage 
capacity, 9.7 g H2/liter C at 300 K & 100 bar

• All briquettes outperform MSC-30 at room temperature in terms of volumetric storage capacity and areal excess 
adsorption.  4K briquette outperforms MSC-30 in terms of gravimetric storage capacity

• The performance of several briquettes is explained by the pore size distribution (previous slide) 

• Large samples, on 0.5-liter HTF, lead to less dependence on sample inhomogeneity 

• 10-liter tank:  will permit studies of flow rates, thermal management, and operation at dry ice temperature (194 K)

Sample

BET 
surface 

area 
(m2/g)

Intragranular
density
(g/cm3)

Intragranular
porosity

Room Temp.
Grav. Excess 

Adsorption (100 
bar) 

(g/kg)

Room Temp. 
Grav. Storage 

Capacity (100 bar) 
(g/kg)

Room Temp. Vol. 
Storage (100 bar) 

(g/L)

2.5K powder 1900 0.62 0.69 5.3 13.2 8.2

3K powder 2600 0.44 0.78 9.3 21.8 9.6

4K powder 2600 0.38 0.81 5.6 20.6 7.8

MSC-30 2600 0.42 0.79 7.2 23.0 8.8

2.5K Briquette (30% binder) 2000 0.74 0.63 6.7 13.9 9.7

3K Briquette (25% binder) 1900 0.56 0.72 7.5 20.2 9.5

4K Briquette (25% binder) 2100 0.53 0.74 8.6 25.7 9.5
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Technical Accomplishments 4 – Isosteric Heat Measurements!

“Best methods” for determination of isosteric heats:  experimental determination of film thickness 

Microcalorimetry (77 K) – collaboration with U. Marseille  
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Conclusions: 
•! Thermodynamic requirement #$h/#mabs % 0 gives lower bound for film thickness l  (exp. film thickness, 

agrees well with simulations) 
•! Isosteric heats from Clausius-Clapeyron in good agreement with microcalorimetric values 
•! $h from absolute adsorption isotherms works to high P (coverage), microcalorimetry only up to 0.5 bar 

sample type l (Å) me/!    (µg/
m2) 

$h          (kJ/
mol) 

MSC-30 AC 5.4 19.6 6.0-3.0 

3K AC 5.1 21.0 6.2-3.6 

HS;0B PVDC 5.3 52.8 7.2-1.6 

Li+Wu(2009) Zeolite NaX 29.3 4.1-? 

Saha (2008) MOF-177 33.6 4.0-0.5 

Saha (2009) MOF-5 28.1 2.6-2.1 

absolute adsorption:  avoid 
unphysical rise of !h 

Grav. exc. (wt.%) 

2.0 

Isosteric Heat (kJ/mol) 
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Technical Accomplishments 5 – Observation of B-C bonds by FT-IR!

Conclusions: 
•! FTIR observation of line at 1022 cm-1 characteristic of B-C bonds 
•! First time that the existence of B-C bonds in boron-doped carbons (vapor deposition) has been observed 

Conventional FTIR method cannot recognize the difference 
of 3K, 3H30, and 3K-H31 at 1020 cm-1 of B-C bond. 

3K 3K* (B4C) 

B-C : 1022 cm-1 

3K-H30 

B-C : 1022 cm-1 

3K-H31 
different apertures 

B-C : 1022 cm-1 
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With small apertures, the B-C bond is evident 
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Technical Accomplishments 6 – Incoherent Inelastic Neutron Scattering (IINS)!

Theory: sub-nm characterization of pores  

Conclusions: 
•! IINS is capable of probing both energy levels and quantum states of adsorbed H2 directly. 
•! Experimentally observed 1st rotational transition (E1 – E0) at 14.7 meV and roto-vibrational peak at 29.5 meV 

(combination of rotational transition and quantum levels in adsorption potential).   
•! Shows potential for sub-nm pore characterization (alternative to N2, NMR, …) 
•! Broadening of peaks:  in-plane recoil + coupling to phonon modes (still needs analysis) 

EJ = J (J +1) !
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Technical Accomplishments 7 – GCMC Simulations on Non-Traditional Pore Geometries!
Search for (a) best representation of experimental isotherms (pore structure & 
energetics from H2 ads.); (b) pore structures with max. H2 storage capacity 

1.! Pore size distribution 
2.! Pore shape & lateral dimensions 
3.! Adsorption (binding) energy 

Conclusions: 
•! Simultaneous fit of excess ads. & gravim. storage cap. (left panels) constrains pore widths & energies effectively 
•! In finite slit pore, edge ads. ## in-plane ads.; doubles gravim. storage cap. relative to infinite pore (right panels) 

Reason: at edge, there is a large region where ads. Is weaker than in slit, but strong enough to hold H2 significantly    
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Input: 

Infinite slit pores, with 2 widths & 2 energies: 
Slit pore of width H between 2 hexagons of side length 11 Å: 

Pressure (bar) 

Pressure (bar) 
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Collaborations

• Midwest Research Institute (Private Sector): Subcontractor for design and construction of instrument for 
large-scale, automated B-doping (B-doped monoliths)

• NREL (Federal): Validation of H2 uptake data. [L. Simpson, P. Parilla, K. O’Neill]

• Advanced Photon Source/ANL (Federal): Collaboration with J. Ilavsky for Ultra-small-angle x-ray 
scattering studies of samples under General User Program (GUP-10069, GUP-20661). 

• NIST (Federal): Collaboration with Y. Liu, G. Brown, and J. Burress on small-angle neutron scattering 
experiments on samples loaded with H2, including density correlations of nonadsorbed H2.

• U. Montpellier II and U. Marseille, France (Academic): Collaboration with L. Firlej and B. Kuchta to 
perform GCMC simulations.

• Wroclaw U. Technology, Poland (Academic): Collaboration with S. Roszak for adsorption potentials for 
H2 sorption on B-doped materials from ab initio quantum-chemical computations.

• ORNL (Federal): Collaboration with M. Stone, use of beamtime for incoherent inelastic neutron scattering 
off H2 adsorbed in nanoporous carbon.

• U. Provence, France (Academic): Collaboration with P. Llewellyn for microcalorimetric determination of 
isosteric heat of adsorption (H2 adsorbed in nanoporous carbon).

• U. Missouri (Academic): Collaboration with P. Yu to perform FTIR experiments on B-doped carbon. 
Collaboration with H. Taub to analyze IINS experiments.
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Future Work: Plans for 2011/12

• Materials development and characterization:  

• Continue production of B-doped samples (B10H14) under O2-free conditions; investigate chemical 
pathways during pyrolysis of B10H14 and annealing (mass spectroscopy of decomposition products) 
and effects on H2 storage; optimize pathway of vapor/liquid deposition of B10H14 based on phase 
diagram of B10H14; raise surface area of doped samples by removal of B via high-temperature 
reaction with H2; optimize annealing

• Measure FTIR spectra of B-doped samples systematically; find number of B-C bonds per surface 
area

• Characterize B-doped materials produced from BCl3 and compare with B-doping from B10H14

• Determine isosteric heats of B-doped samples at low/high coverage and low/high temperature from 
corresponding isotherms (Clausius-Clapeyron; Henry’s law).   Infer distribution of binding energies 
from analysis (highest/lowest/average binding energy)

• Determine experimental film thicknesses/densities from Clausius-Clapeyron and compare with values  
for saturated films, ρfilm(T), from high-pressure excess adsorption isotherms (2010 Report), and with 
values from numerical simulations

• Continue development of IINS, SAXS/USAXS, TEM/SEM methods for characterization of nanopores

• Continue numerical simulations to investigate edge adsorption vs. in-plane adsorption in finite slit pores, 
and compare results with experimental results on carbons activated at high KOH:C and high T.  Continue 
simulations to determine pore structures and energetics from experimental H2 isotherms

• Complete automated B-doping instrument (MRI); use for vapor deposition of B10H14 for B:C = 10 wt%

• Manufacture B-doped monoliths; test in 0.5-liter HTF and 10 liter tank; study flow rate (loading/unloading) 
and thermal management issues.
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Project Summary

• Manufactured B-substituted carbon under O2-free conditions by thermolysis of B10H14, with B:C = 
7-10 wt%, without compromising high surface areas (≥ 2000 m2/g)

• Demonstrated that B:C = 8.6 wt% raises areal excess adsorption (independent of surface area) 
at 303 K and 200 bar by 30% relative to undoped material.  Indicates increase in average binding 
energy, not solely highest binding energy

• Optimized pore geometry of undoped carbons.  Determined that low KOH:C and T give large, 
closely stacked “graphene sheets”; and high KOH:C and T give small, loosely stacked “sheets”.  
Optimum geometry: KOH:C = 3.5 and T = 800 oC; best balance between large fraction of narrow 
pores and large cumulative pore volume

• Compared monoliths vs. powders (undoped).  All briquettes outperform MSC-30 at 300 K in 
terms of areal excess adsorption (~ average binding energy) and volumetric storage capacity.  
Best monolith gave 10 g H2/liter C at 300 K & 100 bar

• Developed method to determine experimental thicknesses of H2 films from Clausius-Clapeyron
analysis of absolute adsorption isotherms.  Agree well with simulations.  Validated isosteric heats 
from absolute adsorption isotherms by microcalorimetric measurements.

• Established existence of B-C bonds in B-doped carbons, made from B10H14, using FTIR 
spectroscopy.

• Conducted inelastic neutron scattering experiment to observe rotational-vibrational transition in 
H2 adsorbed in sub-nm carbon pores.  Proof-of-concept for sub-nm pore characterization.

• In simulations of H2 adsorption in finite slit pores, found large contributions from edge sites: edge 
adsorption comparable to in-plane adsorption; doubles gravimetric storage capacity relative to 
infinite pores 
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