

A Joint Theory and Experimental Project in the Synthesis and Testing of Porous COFs/ZIFs for On-Board Vehicular Hydrogen Storage

Omar M. Yaghi

Department of Chemistry Center for Reticular Chemistry UCLA

> Project ID ST022

May 12, 2011

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Project start date: 9/1/2008

(funded from 4/1/2009)

Project end date: 1/31/2013

Percent complete: 35%

Budget

Total project funding

- DOE share: \$1.38 M
- Contractor share: \$0.41 M
- ☐ Funding received in FY10: \$300 K
- **I** Funding for FY11: \$284 K

Barriers

Barriers addressed

- Improved gravimetric and volumetric density of hydrogen uptake
- Hydrogen capacity and fast kinetics at 77 K
- Improved hydrogen binding energy
- Synthetic scale up of COFs to cubic meters

Collaborating Partner

- □ Fraser Stoddart (NW)
- Jaheon Kim (Soongsil University)

BASF

Description of new materials

Covalent Organic and Zeolitic Imidazolate Frameworks (COFs and ZIFs)

Control of structure, topology, and interpenetration

Lightweight materials (COFs)

Design of functionalities

□Suitable for light metal impregnation

□High-throughput material discovery is applicable

High-pressure H₂ isotherms of COFs at 77 K

JACS 2009 H_2 uptake in 3D COFs is almost the same as that in MOF-177.

4

Objectives (FY10-11)

Accomplishments in last year:

Predicted adsorption enthalpy of H₂ on various metal sites
Began computation of H₂ uptake isotherms with developed Force Field
Develop chemistry to realize stable frameworks
Introduce potential metal binding sites through the COF synthesis

This year:

 \Box Design new COFs with strong H₂ binding sites

Predict H₂ uptake isotherm for designed frameworks with developed Force Field

□ Prepare stable frameworks with potential metal binding sites

Implement metalation experiments and evaluate the H₂ adsorption property

Prepare mixed-metal ZIFs

Milestones (FY11)

- 1. Discover new COFs with potential metal binding sites and explore H_2 uptake properties of COFs.
- Investigate pressure and temperature dependence of H₂ uptake in metalated COFs over the parameter range specified in DOE YR2015 guidelines (5.5 wt % and 40 g L⁻¹ up to 100 bar, -40/85 C). Compare with predictions from theory.
- 3. Develop new force fields for modeling adsorption properties of COFs. Test models using reported adsorption data for a range of known COFs.
- 4. Design new architectures of promising materials for hydrogen storage that are favorable thermodynamically.

Strategy

Improve the framework stability against impurity (e.g. water)
Introduce metal binding sites through the COF formation

Hydrazone condensation

- Obtained hydrazone chemically stable in water and basic conditions.
- Polyacylhydrazones have been prepared showing monomer exchange under mild conditions.
- Potential metal binding sites

Last year, we prepared hydrazone COF (COF-41)

- Crystalline porous solid
- Stable in air
- BET surface area was 110 m²/g

Synthesis of COFs based on hydrazone linkages

Ar isotherms of COF-42 and COF-43

COF-42 shows 6.5 times higher BET area than COF-41.

H₂ isotherms of COF-42 and COF-43

*Reported last year

Calculated ΔG and ΔH of metalation reactions

atomic Pd except the hydrozone.

→ Design of imine-linked COFs

Pd (s)

Pd(s)

 $\Delta G = -1.82$

 $\Delta H = -0.17$

 $\Delta G = -1.74$ $\Delta H = -0.22$

+

+

N

Ρ́d

Pd N

Design of imine-linked 3D porous COFs \mathbf{NH}_2 $-H_2O$ \mathbf{MH}_2 + H_2N \mathbf{NH}_2 **COF-300 COF-300: JACS 2009** •Permanently porous (BET SA = 1360 m²/g, pore volume = $0.72 \text{ cm}^3/\text{g}$) •1.1 wt% H₂ uptake at 1 bar and 77 K •However, no metal binding sites in the framework Use terephthaldehyde derivatives to introduce metal binding sites OH OH HO 14

Synthesis of COF-301 and metalation

N₂ and H₂ uptake by COF-301 and metalated COFs

	Metal salt	BET SA (m²/g)	H ₂ uptake at 1 bar and 77 K (wt%)
COF-301	n/a	840	1.0
COF-301-Pd	PdCl ₂	60	0.5
COF-301-Pt	PtCl ₂	20	0.2

New COFs replete with metal binding sites

- All starting materials are in hand.
- Synthesis of these COFs has started.

Approach #1: Hexaazatriphenylene COFs

The calculation of the isotherm is underway.

The calculation of the isotherm is underway.

The calculation of the isotherm is underway.

Ideal ΔH for maximized delivery amount of H₂

- Langmuir model was used for the generalization.
- ΔH = 20 kJ/mol is the optimal value to maximize the delivery amount between 5 and 100 bar.

Approach #2: Optimization of metal loading

- Simulated data indicate that delivery amount of H₂ (total, 298 K) can be maximized by either partial metalation or mixed metal impregnation.
- Implement calculations on other COFs (e.g. COF-301, COF-42) to optimize delivery amount of H₂.
- Study the effects of mixed metal impregnation to control the Q_{st} profile.
- Based on the prediction, metalation experiments will be performed.

Summary

Relevance: For room temperature hydrogen storage, a systematic survey was started experimentally as well as theoretically.

Approach: Aim at increasing strong binding sites for maximum hydrogen uptake capacity without losing pore volume.

Technical accomplishments and progress:

- Synthesized new COFs through hydrazone and imine condensation
- Began metalation experiments of COFs
- Began synthesis of mixed-metal ZIFs for improved adsorption enthalpy
- Found linkers with optimal binding energy for H₂ storage (20 kJ/mol)
- Designed new architectures with these linkers and began simulation calculations of H₂ uptake

Technology transfer/collaborations: Active relationship with collaboration partners (organic synthesis and material design) and BASF (verification of the data).

Proposed future research:

- Prepare COFs with metal binding sites and optimize the activation condition
- Employ metals to create strong binding sites and experimentally evaluate the Q_{st}
- Predict H₂ isotherms for modeled compounds with metals
- Study plausible route to synthesize the modeled compounds based on the thermodynamics
- Calculate the diffusion coefficient to estimate the kinetic factor with new force field