New Carbon-Based Porous Materials with Increased Heats of Adsorption for Hydrogen Storage

Randall Snurr, Joseph Hupp, Mercouri Kanatzidis, SonBinh Nguyen *Northwestern University May, 2011* Project ID:

ST023

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start date: 9/1/2008*
- End date: 8/31/2012
- 60% complete*

Barriers Addressed

- Hydrogen storage
 - Gravimetric target
 - Volumetric target
 - Increased heat of adsorption

Budget

- Total project funding
 - DOE share: \$1,295,493
 - Contractor share: \$321,833
- FY10 Funding: \$350,000
- FY11 Funding: \$300,000

Partners

- Juergen Eckert (UCSB)
- NREL

*9/1/2008 is official start date. Initial funding received March 2009.

Relevance

Overall Project Objectives

- Develop new materials to meet DOE volumetric and gravimetric targets for hydrogen storage
 - Metal-organic frameworks (MOFs)
 - Polymer-organic frameworks (POFs)
- Our view is that hydrogen storage sorbents must have both
 - High heats of adsorption and
 - High surface area

Relevance

Objectives for Current Year

- MOFs and POFs
 - Develop materials with very high surface area
 - Develop materials containing functional groups that can bind hydrogen
 - Measure heats of adsorption and hydrogen uptake
- Modeling
 - Aid in the development of high surface area materials
 - Develop models for cation-containing MOFs
 - Screen different cations and cation environments for their ability to bind hydrogen and the resulting storage capacities

Approach

Approach

Enhance heats of adsorption via introduction of cations
 Two approaches for introducing cations

- Framework reduction
- Alkoxide functionalization
 Both of these techniques were pioneered by members of our team at Northwestern University
- 2. Enhance H_2 capacity by increasing surface area
- 3. Combine chemistries for high heats of adsorption and high surface areas to increase room temperature hydrogen storage

Status

Go/No-Go Decision: August 2010 \rightarrow Go

Some Key Milestones Achieved:

- Synthesized POFs with surface areas of >1500 m^2/g .
- Achieved 10 kJ/mol heat of adsorption with little or no drop-off at higher coverages (no less than 6 kJ/mol at highest coverage).
- Determined that catenation is generally not beneficial for hydrogen uptake in MOFs without cations.
- Developed model for MOFs containing cations.
- Achieved material gravimetric capacity of >6 wt.% at 77 K and 100 bar.
- Achieved material volumetric capacity of >30 g/L at 77 K and 100 bar.

Technical Accomplishments: Outline

- Metal-organic frameworks (MOFs)
 - Achieving very high surface areas and cryogenic hydrogen uptake
 - Achieving high heats of adsorption
 - zwitterionic MOFs (last year)
 - Alkoxide functionalization
- Polymer-organic frameworks (POFs)
 - New synthetic chemistries
 - Achieving high surface areas
 - Achieving high heats of adsorption

Some high surface area MOFs from the literature as of early 2010.

From Modeling to Reality

Farha, Yazaydin, Eryazici, Malliakas, Hauser, Kanatzidis, Nguyen, Snurr, Hupp, Nature Chem., 2010.

Why this topology:

- (a) high stability under ambient conditions
- (b) unsaturated coordination sites (Cu(II) sites)
- (c) impossibility of forming interpenetrated multi-network structures.
 - cf. M. Schroder et al. and H-C. Zhou, et al.

New Ligand

Structure Prediction

Combine this ligand with Cu-paddlewheels in Fm-3m space group

New Material: NU-100

Predicted Surface Area of NU-100

Simulated Structure \rightarrow Simulated N₂ isotherm \rightarrow BET Model

MOF Synthesis

MOF Activation

- Heating at 100 C under vacuum \rightarrow Failed
- Solvent exchange, then room temperature evacuation → Failed
 - -ethanol
 - -acetone
 - -chloroform
- Modified supercritical drying → This technique, developed by the Hupp group at NU, is now used by other groups to successfully activate MOFs.

New Material: NU-100

truncated octahedron

19 Farha, Yazaydin, Eryazici, Malliakas, Hauser, Kanatzidis, Nguyen, Snurr, Hupp, Nature Chem., 2010.

≈27.8 Å

Hydrogen Storage

Hydrogen uptake at 77 KExcess 99.5 mg / gTotal 164 mg / g9 wt%14 wt%28 g/L45 g/LThese excess values are the highest reported to date at 77 K.

Improved Heats of Adsorption Approach 1: Charged Cavities (last year)

We have conceived and synthesized a new class of zwitterionic MOFs Isosteric heats of adsorption in new zwitterionic MOFs obtained from experimental isotherms at 77 and 87 K

 \rightarrow Over 10 kJ/mol heat of adsorption at low loading

Approach 2: Linker functionalization with divalent cations

- Metal-alkoxide MOFs have been synthesized in our labs.
- Which metal is best?
 - Divalent cations have larger electric fields than Li.
 - Transition metals can interact strongly with hydrogen.
- We are studying this question computationally and experimentally.

Getman, Miller, Wang, Snurr, J. Phys. Chem. C, 2011.

Approach 2: Linker functionalization with divalent cations

Approach 2: Linker functionalization with divalent cations

Preliminary experimental results

- Rotational disorder prevents complete solution of the crystal structure
- 58% post-synthesis cleavage of photolabile *o*-nitrobenzyl groups
- Metalation of naked catechol struts is underway

Molecular Modeling

- Determine H₂/cation interactions with high-level quantum chemical methods (MP2 with large basis set)
- Fit QM results to analytic forms for grand canonical Monte Carlo (GCMC) simulations
- Use GCMC to predict effects of different cations, cation loading, pore size, etc. on hydrogen uptake

Past work on unfunctionalized MOFs: Hydrogen in IRMOF-1

Simulations: Ryan, Broadbelt, Snurr, *Chem. Comm.*, 2008. Experiments: Kaye, Dailly, Yaghi, Long, *J. Am. Chem. Soc.*, 2007.

Getman, Miller, Wang, Snurr, J. Phys. Chem. C, 2011.

Functional groups per linker:

──Unfunctionalized ··+··1 ··�··3 ···▲···6

 Gravimetric adsorption is predicted to increase with increasing number of functional groups per linker.

Absolute Isotherms

IRMOF-16 was chosen for modeling as an example of a high surface area MOF.

Adding more functional groups is predicted to lead to significant increases in volumetric storage.

Polymer-Organic Frameworks

- Tailorable, microporous polymers made from rigid building blocks
- Modular construction
 - Schiff's base chemistry (FY 2010)
 - "Click" chemistry (FY 2011)
 - Components chosen to produce loosely-packed, extended 3D networks
- Surface area can be increased by tuning the synthesis conditions.
- We have achieved 1500 m²/g.
- Extremely stable. POFs survive at pH 14.5 for days.

POFs with –OH functional groups

OH OH OH

Obtained as powder or monolith

 POFs can be synthesized with a wide range of functional groups.

CHO

ĊHO

• Some of these functional groups can be metallated to create sites that may bind hydrogen strongly (in progress).

Heat of H₂ adsorption is 8.2 kJ/mol at low coverage in POF with –OH groups.

30

Collaborations

NREL

- Lin Simpson, Philip Parilla
- Validation of high pressure sorption measurements
- Currently in progress
- University of California, Santa Barbara
 - Juergen Eckert
 - Neutron scattering
 - Beam time has been approved

Future Work

Major Focus: Combine strategies for

- high surface area and high free volume
- high heats of adsorption

Planned work:

- Introduce Mg and other cations into MOFs and POFs
- Continue efforts to increase surface areas of POFs
- Continue to measure H₂ uptake and heats in new materials
- Measure high-pressure, room-temperature isotherms in most promising materials
- Validate model against experimental data
- Determine optimal combination of heat of adsorption and surface area

Summary

- We are developing new materials to meet DOE hydrogen storage targets. The new concept is to introduce cations into MOFs and POFs to **improve heats of adsorption** (which will improve room temperature storage) along with **high surface areas** (which are needed for high hydrogen capacity).
- We have synthesized a variety of new MOFs
 - Functional groups can be tailored to increase the H₂ heat of adsorption
 - Achieved 11 kJ/mol heat of adsorption at low loading (zwitterionic MOF)
 - Achieved 14 wt% and 45 g/L at cryogenic temperatures (NU-100 MOF)
- We have synthesized a variety of new POFs
 - Functional groups can be tailored to increase the H_2 heat of adsorption
 - Achieved 1500 m²/g
 - Achieved 8 kJ/mol heat of adsorption at low loading
- We have developed useful models for funtionalized MOFs
 - Alkaline earth and transition metal alkoxide groups are promising targets
 - Modeling can be used to design MOFs on the computer before their synthesis

Summary

	April 2010	March 2011
Surface Area (m²/g)	1521	6143
Isosteric Heat of Adsorption (kJ/mol)	11	11
Excess H ₂ Uptake at 77 K and 1 bar (wt%)	1.5	1.6
Excess H ₂ Uptake at 77 K and 70 bar (wt%)	Not measured	9
Excess H ₂ Uptake at 77 K and 70 bar (g/L)	Not measured	28

Technical Backup Slides

- Another approach: Metal-Alkoxide MOFs
- Previously synthesized in our labs:

Li- functionalized MOFs

Mulfort, Farha, Stern, Sarjeant, Hupp, J. Am. Chem. Soc., 2009.

Model for Cation-Containing MOFs

- ab initio-based force field for alkoxide groups
 - Morse, Coulomb potentials
 - Fit to 200 single points
 - Li, Mg, Mn: MP2/6-311+G**
 - Ni, Cu: M06/6-311++G**
- Lennard-Jones potentials from DREIDING force field for other framework atoms

points: QM energies, lines: fitted force fields. Force fields based on 12 'approaches.'

H₂ Adsorption on Metal Alkoxides

- Metals have large positive charges, H₂ binds "side-on"
- Li, Mg: physical adsorption
- Mn, Ni, Cu: chemical bonds
- Predicted binding energies on all but Li are larger than highest to date observed in literature
 - Ni-CPO-27: 13.5 kJ/mol

$H_2 + MO_x - C_6 H_{(6-x)} \rightarrow H_2 - MO_x - C_6 H_{(6-x)}$				
			H ₂ binding energy	
		Charge	(kJ/mol)	
	Li	+0.9	-10	
	Mg	+1.2	-22	
	Mn	+1.0	-46	
	Ni	+0.6	-78	
	Cu	+0.6	-84	

Functional groups per linker:

- Initial heats of adsorption are larger in MOFs with more functional groups.
- MOFs with more functional groups sustain higher heats of adsorption over the full pressure range.

GCMC Results