Design of Novel Multi-Component Metal Hydride-Based Mixtures for Hydrogen Storage

C. Wolverton (PI), H. Kung Northwestern University

> V. Ozolins UCLA

A. Sudik, J. Yang Ford Motor Company

NORTHWESTERN UNIVERSITY

UCLA

ST028

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start Date: 9/1/08 (Funding started Feb. 09)
- Project End Date: 8/31/13
- ~40% complete

Budget

- Total Budget: \$2714K
 - DOE Share: \$2160K
 - Contractors Share: \$554K
- Funding for FY10: \$450K
- Funding for FY11: \$400K (anticipated)

Barriers

- Barriers addressed
 - P. Lack of Understanding of Hydrogen Physisorption and Chemisorption
 - A. System Weight and Volume
 - E. Charging/Discharging Rates

Partners

- Northwestern University
- UCLA
- Ford Motor Company
- Project lead: Northwestern University

Relevance - Project Objectives

- Our project: <u>Combine</u> materials from <u>distinct</u> <u>categories</u> to form novel multicomponent reactions
- Examples of systems to be studied include mixtures of complex hydrides and chemical hydrides and novel multicomponent complex hydride materials and reactions

Approach

Our approach involves a powerful blend of:

1) H2 Storage measurements and characterization, 2) State-of-the-art computational modeling, 3) Detailed catalysis experiments, 4) In-depth automotive perspective

> Hydrogen Storage Measurements and Auto Perspective (Sudik and Yang, Ford)

Computational Prediction of Novel Reactions (Wolverton, Ozolins)

Kinetics/Catalysis Experiments (Kung, NU)

UCLA

NORTHWESTERN UNIVERSITY

Technical Accomplishments: Experimental Screening & Testing of Theoretical Predictions

Experimental Objectives:

Synthesize, characterize, and test promising storage reactions predicted by computation
Interface with kinetics-focused work to provide materials of interest for catalysis studies and

assist in detailed testing of catalyzed reactions.

Predicted Compositions of Interest	Experimental Status			
2(NH ₄) ₂ B ₁₂ H ₁₂	Material received from OSU (Zhao)			
$5Mg(BH_4)_2 + 2LiBH_4$	Material prepared & experiments initiated			
6Mg(BH ₄) ₂	Deferred given existing literature data			
$Mg(BH_4)_2 + Mg(NH_2)_2$	Material prepared & experiments initiated			
$5MgH_2 + MgB_{12}H_{12}$	Deferred given existing literature data			
= current experimental focus				

PEGS Predicted Mg-B-N-H Structure

Mg(BH₄)(NH₂)-PEGS (4 f.u.)

a=8.83 Å, b=6.53 Å, c=6.34 Å

Space group: Ima2 (46)

Guiding Questions:

- o Is there experimental evidence of a new reactant structure (e.g., Mg-B-N-H)?
- o What is the experimentally observed desorption pathway?
- o How do these results compare with predictions?

Technical Accomplishments: Experimental Testing of Predicted Reactions

V. Ozolins, E. H. Majzoub, and C. Wolverton, JACS **131** (1), 230-237 (2009).

Synthesis and Characterization of 5Mg(BH₄)₂ + 2LiBH₄

- At least two desorption steps evident (onsets of ~175 and 325°C)
- VT-XRD data reveals 1st step corresponds, in part, to the disappearance of Mg(BH₄)₂ phase and the 2nd step to the possible formation of MgB₂
- More data necessary to determine specific experimental pathway for comparison with predicted pathway

Technical Accomplishments: Experimental Testing of Predicted Compounds

Previously, no known quarternary borohydride/amide compounds in Mg-B-N-H system

 $Mg(BH_4)_2 + Mg(NH_2)_2 \rightarrow MgBNH_6$

kJ/(mol Mg)	$\Delta E_{ m Static}$	$\Delta H_{\mathrm{ZPE}}^{T=0\mathrm{K}}$	$\Delta H^{T=300\mathrm{K}}$
Mg(BH ₄)(NH ₂)	-9.75	-8.18	-8.63

New, predicted compound stable w.r.t. $Mg(BH_4)_2 + Mg(NH_2)_2$

Mg(BH₄)(NH₂)-PEGS (4 f.u.) Space group: Ima2 (46) a=8.83 Å, b=6.53 Å, c=6.34 Å

Y.-S. Zhang and C. Wolverton, unpublished (2011).

Synthesis & Characterization of Mg(NH₂)₂ + Mg(BH₄)₂ Mixture

Synthesis:

- o 1:1 ratio of $Mg(NH_2)_2$: $Mg(BH_4)_2$ ball-milled (Spex) for 5 hrs
- o $Mg(NH_2)_2$ synthesized from MgH_2 and NH_3 ; $Mg(BH_4)_2$ purchased from Aldrich
- Preliminary hydrogen release & phase characterization performed at Ford; Samples sent from Ford to Northwestern U. for catalyst development

FT-IR data suggests NH₂⁻ and BH₄⁻ units are in the same environment as in individual reactants

Desorption occurs in two steps (200 & 400°C onsets) with a total of ~11 wt% released (10.9 wt% theo.)

Characterization of the Reaction Pathway for $Mg(NH_2)_2 + Mg(BH_4)_2$

Preliminary Conclusions:

- Step 1: Involves consumption of amide and formation of a B-N phase (IR)
- Step 2: Involves decomposition of B-N phase and MgH₂ to form Mg and MgB₂ (IR & XRD)
- More data necessary to determine specific experimental pathway for comparison with predicted pathway.

Technical Accomplishments: New Metal–Carbon Catalyst

Problems with the conventional Ti metal catalyst

- only works for few hydrides (component-specific)
- catalyst loses activity upon repeated cycling

Objective—to develop a new form of catalyst

- applicable to any solid-state hydrides
- catalyze de-/re-hydrogenation without specific interactions with hydrides (e.g., compound formation)
- easily prepare in a reproducible manner for optimizing, fine-tuning the composition and functionality

Initial observation

- well studied NaAlH₄ is used as a test case
- cobalt on activated carbon exhibits a high activity for dehydrogenation
- adding new catalyst (cobalt on activated carbon) further enhances the dehydrogenation kinetics of Ti-catalyzed NaAlH₄

Preliminary observation justifies further investigation in order to

—understand the phenomena—optimize the catalytic system

Proposed catalytic actions

- carbon substrate for large contact area with hydrides
- porous carbon introduces nanoconfinement effect
- adding metal NPs enhances catalytic activity, possibly by spillover effect

Technical Accomplishments: New Metal–Carbon Catalyst Test Case: NaAlH₄

Higher loading cobalt on a high surface area, porous carbon material enhances dehydrogenation

Summary

- Various forms of carbon are catalysts for NaAlH₄.
- Catalytic effect: activated carbon > MWCNTs> graphite nanoplatelets > graphite flakes.
- Adding 1 to 3 wt.% metal (Co or Cu) to carbon further enhances catalytic effect, and Co> Cu.
- Dehydrogenated sample can be re-hydrogenated.

$Mg(NH_2)_2 + Mg(BH_4)_2$ Thermal Decomposition: Effect of Catalyst (30% (3% Co-activated carbon) and TiCl₃)

Effect of Catalyst in Mg(NH₂)₂–Mg(BH₄)₂ Thermal Decomposition: Pressure measurement with in-line gas phase FT-IR

Catalyzed
$$Mg(NH_2)_2 - Mg(BH_4)_2$$
:

 $H_2 = \frac{\text{total mass lost -estimated NH}_3}{\text{sample mass (active material)}} = \frac{7.9 - 0.6 \text{ mg}}{59.0 \text{ mg}} = 12.4 \text{ wt. \%};$

$$NH_3 = \frac{\text{estimated } NH_3}{\text{sample mass (active material)}} = \frac{0.6 \text{ mg}}{59.0 \text{ mg}} = 1.0 \text{ wt. \%};$$

Assuming mass lost due to NH_3 and H_2 formation only—catalyzed sample released more H_2 and less NH_3 !

Technical Accomplishments: New Theoretical Predictions

- New borohydride compounds
 - CaB_2H_6 and MgB_2H_6
 - $-AIB_4H_{11}$
- Decomposition products in metal amidoboranes
- Properties of nano-confined materials
- Diffusion & mass transport (required for fast kinetics)

Technical Accomplishments: Prediction of New Mg-B-H and Ca-B-H Decomposition Pathways

Y.-S. Zhang, E.H. Majzoub, V. Ozolins, and C. Wolverton, Phys Rev B 82, 174107 (2010).

Technical Accomplishments: New metal borohydride: AlB₄H₁₁

In collaboration with Xuenian Chen and JiCheng Zhao (OSU)

- AIB_4H_{11} synthesis: 2 $AI(BH_4)_3+B_2H_6 \rightarrow 2AIB_4H_{11}+4H_2$
- AlB₄H₁₁ reversibility observed for at mild conditions: 200C, 90 bar H2, 5hr
- But the structure of AlB₄H₁₁ is experimentally unknown: amorphous and polymeric
- •A great challenge for computational approaches

J. –C. Zhao, et al. J. Phys. Chem. C. <u>113</u>, 2 (2009)

Can we use PEGS+DFT to predict the structure? Or at least help interpret the experimental data?

PEGS+DFT Predicted AlB₄H₁₁ low-energy structure

In collaboration with Xuenian Chen and JiCheng Zhao (OSU)

Polymeric Chain: Comprised of Al, BH₄, BH₃, and BH₂ "units"

Theoretical phonon DOS vs.

Good agreement between theory and experiment.

Theoretical peaks slightly shifted down: possibly due to exchange-correlation functional (overestimation of bond lengths).

Theoretical structure has provided good guidance to experimental efforts

Technical Accomplishments Amidoborane Decomposition Products: Dianion [NHBHNHBH₃]²⁻

in collaboration with T. Autrey (PNNL)

 B-N-B-N bridge proposed AB decomposition product.
 DFT calculations support this proposal: NHBHNHBH₃ is lowest energy decomposition intermediate (out of many possibilities calculated). Near thermoneutral for LiAB and CaAB

A. T. Luedtke and T. Autrey, Inorganic Chem. <u>49</u>, 3905 (2010)

Technical Accomplishment: Stability Trends in Amidoboranes Tailoring ΔH by Changing Metal Cations

Development of nanoPEGS and nanoGCLP

- Improved PEGS to handle nanoparticles using Wang-Landau Monte Carlo
- Generalized grand-canonical linear programming (GCLP) to nanoclusters
- Predicted phase diagrams & decomposition pathways of nano-NaAlH₄
- Predicted nanoparticle analogues of destabilized reactions
- E. H. Majzoub, F. Zhou, and V. Ozolins, J Phys Chem C **115**, 2636–2643 (2011)

Technical Accomplishments: Predicted Decomposition Enthalpies of Free LiBH₄ Nanos

In collaboration with E.H. Majzoub (UMSL) and F.-C. Chuang (Nat'l Sun Yat-Sen U)

Technical Accomplishments: Developed Predictive Models for Kinetics of Mass Transport

K. Michel and V. Ozolins, submitted to J Phys Chem (2011).

Validation of Diffusion-Reaction Model

Activation Energy	Calculated	
(kJ/mol)	T < T _{crit}	T > T _{crit}
[AIH ₃]	109	172
[AIH ₄] ⁺	108	170
Activation Energy	Calculated	
(kJ/mol)	T < T _{crit}	T > T _{crit}
[Na]-	53	86 🖌
	Activation Energy (kJ/mol) [AIH ₃] [AIH ₄] ⁺ Activation Energy (kJ/mol) [Na] ⁻	Activation Energy (kJ/mol)Calcul T < T_{crit} [AlH3]109[AlH4]+108Activation Energy (kJ/mol)Calcul T < T_{crit} [Na]-53 ✓

Experimentally Measured Activation Energies (kJ/mol)	Rehydrogenation	Dehydrogenation	
	2 mol % Ti	Undoped	2 mol % Ti
$NaAIH_4 \rightarrow \frac{1}{3}Na_3AIH_6 + \frac{2}{3}AI + H_2$	62 🖌	118	80, 86 🗸

Conclusion: Diffusion of $[Na]^{-}$ vacancies through $Na_{3}AIH_{6}$ is ratelimiting for both hydrogenation and de-hydrogenation of $NaAIH_{4}$.

K. Michel and V. Ozolins, submitted to J Phys Chem C (2011).

Work in Progress: Kinetics in Borohydrides

 $5Mg(BH_4)_2 + 2LiBH_4 \rightarrow Li_2B_{12}H_{12} + 5MgH_2 + 13H_2$

Mg interstitials

Generalized interfacial equilibrium conditions for:

- Two reactants and three products (incl. H₂)
- Four elements (Li, Mg, B, H)

Collaborations

Pl's/co-Pl's

Chris Wolverton (Northwestern, lead) Harold Kung (Northwestern) Vidvuds Ozolins (UCLA, subcontract) Andrea Sudik (Ford, no-cost collaborator) Jun Yang (Ford, no-cost collaborator)

Outside Collaborators:

D. Siegel (U. Michigan) E. Majzoub (UMSL) G. Ceder, N. Marzari (MIT) C. Brown (NIST) T. Burrell (LANL) T. Autrey (PNNL) F.-C. Chuang (Nat'l Sun Yat-Sen U) J. C. Zhao (OSU)

Future Plans

- Experimentally characterized storage properties/reactions of (NH₄)₂B₁₂H₁₂ and other predicted reactions; elucidate decomposition pathway for Mg(BH₄)₂+Mg(NH₂)₂ mixture
- Extend experimental catalyst studies to other predicted promising materials; explore optimal morphology of carbon/metal catalysts
- Direct computational efforts to focus on kinetics, defects, diffusion/mass transport in promising predicted reactions
- Continue some computational exploration for: novel BH₄/NH₂ compounds and reversible reactions, and mixed metal borohydrides

Summary – Project Overview

- Project focused on design of novel multi-component mixtures for hydrogen storage
- Systems being studied include mixtures of complex hydrides and chemical hydrides involving combinations of B- and Ncontaining materials
- Powerful blend of: 1) H₂ Storage measurements and characterization, 2) State-of-the-art computational modeling, 3) Detailed catalysis experiments, 4) In-depth automotive perspective

Summary – Technical Accomplishments

- Synthesis and characterization (XRD, IR, TPD) of two predicted promising hydride mixtures: 5LiBH₄ + 2Mg(BH₄)₂ and Mg(BH₄)₂ + Mg(NH₂)₂
- Prediction of new previously-unknown MgBNH₆ compound, stable w.r.t. Mg(BH₄)₂ + Mg(NH₂)₂
- Proposed new metal-carbon catalyst: Tested on NaAlH₄, and applied to Mg(BH₄)₂ + Mg(NH₂)₂; Effective catalyst - lowers desorption temperature of both reactions, and reduces formation of NH₃ in the latter case.
- Predicted new CaB_2H_6 product in decomposition of $Ca(BH_4)_2$
- Predicted structure of AlB₄H₁₁ polymeric compound
- Found new low-energy decomposition product of amidoborane reactions; found stability trends in AB reactions to tailor ΔH to choice of metal cation
- Extended PEGS and GCLP to apply to nano-confined materials. Explored nano NaAlH₄ and LiBH₄ reactions
- Developed predictive models of kinetics of mass transport. Application to NaAlH₄ and borohydrides (in progress)