# Advanced, High-Capacity Reversible Metal Hydrides

## Craig M. Jensen, University of Hawaii Sean McGrady, University of New Brunswick US DOE Annual Merit Review Meeting



ST 031

This presentation does not contain any proprietary, confidential, or otherwise restricted information

MĀNOA

# Overview

## Timeline

- Start Date: March 2005
- End Date: September 2011
- 98% complete

## Budget

- Total project funding: \$2,945,058
  - DOE share: \$2,335,173
  - Contractor share: \$609,885
- Funding obligated for FY10:
   \$0
- Funding for FY11: no cost extension only.

## Barriers

- A. System Weight and Volume
- E. Charging/Discharging Rates
- F. Thermal management
- P. Lack of understanding of hydrogen chemisorption and physisorption

## Partners

- •E. Akiba, K. Sakaki; AIST, Japan
- •C. Ahn, S.J. Hwang; California Institute of Technology
- •T. Autrey, Pacific Northwest National Lab
- •R. Cantelli; University of Rome
- •M Conradi, Washington University
- •B. Hauback, Institute for Energy Technology, Norway
- •H. Hagmann, R. Cerny; University of Geneva
- •T. Jensen, Aahus University, Denmark
- •L. Knight, G. Lewis, J. Low, A. Sachtler; UOP, LLC
- •R. Kuboto; KEK
- •R. Kumar; University of Nevada at Las Vegas
- •S. McGrady; University of New Brunswick
- •S. Orimo, Y. Nakamori; Tohoku University, Japan
- •I. Robertson; University of Illinois
- •E. Ronnebro; SNL, PNNL
- •T. Udovic; NIST
- •J. Vajo, P. Liu; HRL

# **Objectives and Relevance**

Development of a new class of reversible complexes that has the potential to meet the DOE kinetic and system gravimetric storage capacity targets.

Investigations during FY11 focused on:

Reversible dehydrogenation of MgBH<sub>4</sub> (14 wt % theoretical, >12 wt % demonstrated reversible capacity), LiSc(BH<sub>4</sub>)<sub>4</sub> (14.7 wt %), NaSc(BH<sub>4</sub>)<sub>4</sub> (12.8 wt %), and Na<sub>2</sub>Mn(BH<sub>4</sub>)<sub>4</sub> (6.9 wt %), at temperatures in the 100-220 °C temperature range.

# Approach

## Nano-confined AI and Mg Compounds in Carbon Aerogels (no further studies in FY11)

• Low temperature homogenous organometallic approach to incorporation of AI and Mg based hydrides into carbon aerogels results in unprecedented high loadings without degradation of nano-porous scaffold that occurs with melt intercalation.



• Determine the effects of nano-confinement on the kinetics and thermodynamics of the dehydrogenation of AI and Mg based hydrides.

# Approach

#### Group I and II Salts of Anionic Transition Metal Borohydride Complexes

> Several potential improvements over neutral complexes:

- Higher (9-13 wt %) hydrogen content than neutral TM borohydrides.
- lonic character reduces volatility and increases stability.
- Very low levels of diborane are evolved during the dehydrogenation.
- > Altered thermodynamic stability might allow reversibility.

#### $Mg(BH_4)_2$

- > Mg(BH<sub>4</sub>)<sub>2</sub> evolves **14.8 wt %** H<sub>2</sub> upon dehydrogenation.
- >  $\Delta H_{dehyd}$  = 42 kJ/mol H<sub>2</sub>  $\Rightarrow$  it should be possible to hydrogenate MgB<sub>2</sub> to Mg(BH<sub>4</sub>)<sub>2</sub> at moderate temperatures and pressures.
- > Dehydrogenation has been found to be a multi-step process. Can reversible dehydrogenation of at least some steps be accomplished under milder conditions?

# Approach

Re-hydrogenation in Non-conventional Solvents (no further studies in FY11)

> Explore hydrogenation of AI to AIH<sub>3</sub>; AI/MgH<sub>2</sub> to Mg(AIH<sub>4</sub>)<sub>2</sub>; and LiH/AI to LiAIH<sub>4</sub> in supercritical fluids and liquefied gases such as dimethyl ether which can form adducts during synthesis but are easily eliminated due to their high volatility.

Studies by Orimo (Raman spectroscopy) and Hwang (NMR spectroscopy) indicated that incomplete re-hydrogenation is the result of the high kinetic stability of  $MgB_{12}H_{12}$ .

First Demonstration of Full Hydrogen Hydrogenation

 $\begin{array}{rcl} & 900 \text{ atm H}_2 \\ & \text{MgB}_2 & \xrightarrow{} & \text{Mg(BH}_4)_2 & \text{XRD, IR, MAS }^{11}\text{B NMR} \\ & 400 \ ^\circ\text{C} \end{array}$ 

Rönnebro, Jensen, and Severa US patent application U.S. Patent 12/553,633. G. Severa, E. Rönnebro, C.M.Jensen; *Chemical Commun.* **2010**, *46*, 421.





#### 12 wt % Cycling Capacity



12 wt % hydrogen was obtained upon dehydrogenation at 530°C.

MgO arises during sampling, suggesting that 12.6 wt % hydrogen can be cycled.

Upon longer reaction times, higher levels of hydrogenation MgB<sub>2</sub> might lead to cycling of >14 wt % hydrogen.

### **Cycling Under Mild Conditions**

First example of the **reversible**, solid state dehydrogenation of a borohydride at temperatures below 350 °C.



M. Chong, A. Karkamkar, T. Autrey. S. Jalisatgi, S. Orimo, C.M. Jensen; *Chem. Commun.* **2011**, *37*, 1330.

Identification and Quantification of Borane Products Produced from Higher From Dehydrogenation at Higher Temperatures - Collaboration with PNNL

Major products (mol %) formed in decomposition of  $Mg(BH_4)_2$  determined from <sup>11</sup>B NMR

| d/ppm | Species                                                                                              | 300 1C | 350 1C | 400 1C |
|-------|------------------------------------------------------------------------------------------------------|--------|--------|--------|
| 5     | $\begin{array}{c} B(OH)_4^- \\ (B_{12}H_{12})^{2-} \\ (B_{10}H_{10})^{2-} \\ (B_3H_8)^- \end{array}$ | 86     | 87     | 83     |
| -15.2 |                                                                                                      | 0.4    | 1.5    | 4.5    |
| -29.2 |                                                                                                      | 0.8    | 0.2    | 0.0    |
| -30.3 |                                                                                                      | 12.6   | 9.0    | 6.5    |

- Boric is acid is major species observed in the <sup>11</sup>B NMR.
  - $\Rightarrow$  the major products are arachno- and nido- boranes.
- Concentration of the triborane increases lower temperatures.
- ⇒ First step in the decomposition of Mg(BH<sub>4</sub>)<sub>2</sub> involves the formation of Mg(B<sub>3</sub>H<sub>8</sub>)<sub>2</sub>.

M. Chong, A. Karkamkar, T. Autrey. S. Jalisatgi, S. Orimo, C.M. Jensen; *Chem. Commun.* **2011**, *37*, 1330.

# Mechanism of the Build-up of the Increasing Higher $B_nH_{n+x}$ Species

Metal ion assisted BH condensation pathway



M. Chong, A. Karkamkar, T. Autrey. S. Jalisatgi, S. Orimo, C.M. Jensen; Chem. Commun. 2011, 37, 1330.

#### Synthesis and Characterization of Anionic Transition Metal Borohydrides

### $LiSc(BH_4)_4$



H. Hagemann, M. Longhini, J.W. Kaminski, T.A. Wesolowski, R. Černý, N. Penin, M.H. Sørby, B.C. Hauback, G. Severa and C.M. Jensen J. Phys. Chem B. **2008**, *112*, 7551

## $NaSc(BH_4)_4$



R. Černy, G. Severa, D. Ravnsbaek, Y. Filinchuk, V. d'Anna, H. Hagemann, Y. Cerenius, C.M. Jensen, T.R. Jensen *J. Phys. Chem. C* **2010**, *114*, 1357.



R. Cerny, D.B. Ravnsbaek, G. Severa, Y. Filinchuk, V. d'Anna, H. Hagemann, D. Haase, C.M. Jensen, T.R. Jensen; *J. Phys. Chem. C.* **2010**, *, 114*, 19540.

### $Na_2Mn(BH_4)_4$



G. Severa, H. Hagemann, M. Longhini, J.W.Kaminski, T.A. Wesolowski, C.M. Jensen; *J. Phys. Chem. C.* **2010**, *114*, 15516.

#### High Hydrogen Capacities Low Dehydrogenation Temperatures

|                                     | wt% H  | wt% H |          | level of                                           |
|-------------------------------------|--------|-------|----------|----------------------------------------------------|
|                                     | theory | exp   | <u> </u> | <u>diborane</u>                                    |
| LiSc(BH <sub>4</sub> ) <sub>4</sub> | 14.6   | 3.5   | 175, 260 | ppm                                                |
| $NaSc(BH_4)_4$                      | 12.8   | 1.0   | 170, 225 | ppm                                                |
| $KSc(BH_4)_4$                       | 11.3   | 1.0   | 190, 240 | ppm                                                |
| $Na_2[Mn(BH_4)_4]$                  | 6.9    | 2.9   | 120      | 50:1 H <sub>2</sub> :B <sub>2</sub> H <sub>6</sub> |
|                                     |        |       |          | due to $Mn(BH_4)_2$                                |

contamination



- Release of high wt % hydrogen at high temperatures yields transition metal borides which can not be hydrogenated.
- Low dehydrogenation of LiSc(BH<sub>4</sub>)<sub>4</sub>, NaSc(BH<sub>4</sub>)<sub>4</sub>, and KSc(BH<sub>4</sub>)<sub>4</sub> gives rise to materials that can be hydrogenated. However, the starting borohydrides are not regenerated.

# Collaborations

#### FY11

T. Autrey; PNNL (Government): Character by solution NMR analysis.

- H. Hagmann, R. Cerny; University of Geneva (Academic): Characterization by IR and Raman Spectroscopy and XRD.
- T. Jensen, Aahus University, Denmark (Academic); Characterization by XRD.

#### Project

- C. Ahn; California Institute of Technology (Academic): Characterization by TEM imaging
- E. Akiba, K. Šakaki; AIST, Tsukuba (Government): Characterization by positron annihilation.
- R. Cantelli; University of Rome (Academic): Characterization by anelastic spectroscopy.
- B. Hauback, M. Sorby; Institute for Energy Technology (Government, Norway): Characterization by Synchrotron X-ray and Neutron Diffraction.
- S-J. Hwang; R. Bowman California Institute of Technology, JPL (Academic, Government): Characterization by solid state NMR spectroscopy.
- L. Knight, G. Lewis, J. Low, A. Sachtler; UOP, LLC (Industrial): Characterization by XRD and mass spectroscopy.

# Collaborations

#### Project (continued)

- R. Kuboto; KEK, Tsukbua (Government): characterization by muon spin resonance.
- R. Kumar; University of Nevada at Las Vegas (Academic) high pressure neutron diffraction studies.
- S. Orimo; Tohuku University (Academic): Characterization by DSC and XRD.
- I. Robertson; University of Illinois (Academic): Characterization by TEM.
- E. Ronnebro; SNL (now with PNNL), Government: High pressure studies.
- S. Srinivasan; University of South Florida (Academic): Characterization by DSC.
- V, Stavila; Sanida National Laboratory (Government); high pressure hydrogenation.
- X. Tang: UTRC (Industrial); Confinement in alternative scafolds.
- T. Udovic; NIST (Government) Characterization by Inelastic neutron scattering.
- J. Vajo, P. Liu; HRL (Industrial): Characterization by PCT.

# Future Work

#### Borohydrides

- Adjustment of conditions to maximize trade off between cycling capacity and temperature/pressures required for reversible dehydrogenation of Mg(BH<sub>4</sub>)<sub>2</sub>.
- Determine if a material that undergoes reversible dehydrogenation under moderate conditions can be obtained from the initial dehydrogenation of LiSc(BH<sub>4</sub>)<sub>4</sub>, and/or NaSc(BH<sub>4</sub>)<sub>4</sub> under mild conditions.

#### Hydrogenation in Non-conventional Solvents

• Further evaluation of WTT efficiency of the DME/LiAIH<sub>4</sub> system to be examined in collaboration with Argonne National Lab.



 Mild conditions (<200 °C, <100 atm) have been found for the reversible dehydrogenation of Mg(BH<sub>4</sub>)<sub>2</sub> to Mg(B<sub>3</sub>H<sub>8</sub>)<sub>2</sub>

. . .

Dehydrogenation of (~2.0 wt%) from LiSc(BH<sub>4</sub>)<sub>4</sub> and NaSc(BH<sub>4</sub>)<sub>4</sub> gives rise to materials that can be hydrogenated at mild conditions (<200 °C, <100 atm).</li>

Previous Results

- High, (9-16 wt % confirmed by TEM, EDS, and XRD) MgH<sub>2</sub> loadings of carbon aerogel without host degradation are obtained using the organometallic method.
- The rate of dehydrogenation at 252 °C is >5 times faster than the initial rate found for ball milled MgH<sub>2</sub> and comparable to those found for nano-confined MgH<sub>2</sub> in carbon aerogels by alternative methods at HRL. The rate remains the same over 4 cycles of dehyrogenation-rehydrogenation.



#### Improved kinetics observed for nano-confined $Mg(BH_4)_2$



Hydrogen is evolved at the rate of 0.1 wt%/min at 270 °C during the elimination of the first 4.0 H wt%. However, re-hydrogenation of the resulting MgB<sub>2</sub> under 120 atm at 220 °C gives rise to Mg( $B_{12}H_{12}$ )<sub>2</sub> as occurs with bulk Mg( $BH_4$ )<sub>2</sub>.

Synthesis of nano-confined Mg(BH<sub>4</sub>)<sub>2</sub>

Hydride incorporated into carbon aerogel through immersion in molten Mg(BH<sub>4</sub>)<sub>2</sub>·O(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>. Diethyl ether adduct removed at 220 °C en vacuo.
60 wt% of Mg(BH<sub>4</sub>)<sub>2</sub> is incorporated into aerogel.



#### BACKGROUND

• Like sodium alanate, stepwise dehydrogenation, BUT first step is exothermic.

Step 1:  $3LiAIH_4 \rightarrow Li_3AIH_6 + 2AI + 3H_2 \Delta H = -30 kJ$ 

Step 2:  $Li_3AIH_6 \rightarrow 3LiH + AI + 1.5H_2 \Delta H = 38 \text{ kJ}$ 

- Together steps 1 and 2 provide ~7.9 wt %H.
- Ashby (1963) thermodynamics altered by adduct formation, reversible in THF (high T and P).
- Ritter (2007) reversible in THF (high energy milling) with Ti catalyst. Requires material to be ball milled prior to each hydrogenation half-cycle.
- Graetz (2008) reversible in THF (low T and P) with Ti catalyst.
- THF removal requires heating to 60 °C for 6 h.Incompatible with Ti catalyst since dehydrogenation occurs at the temperature required for removal of THF.

#### Using liquid dimethyl ether as solvent eliminates adduct removal issues

 $LiH + AI[Ti] \xrightarrow{Me_2O/H_2 (100 bar)} LiAIH_4[Ti]$ r.t.; 24 h

- Solvent vents immediately with H<sub>2</sub>
- Fully charged Ti-doped LiAlH<sub>4</sub> obtained
- Very low levels of Ti can be used (~500 ppm)



XRD patterns of LiAlH<sub>4</sub> samples: (a) ICDD ref; (b) ball milled (2.0 mol% TiCl<sub>3</sub>); (c) fully de-H (0.2 mol% TiCl<sub>3</sub>); (d) re-H (2.0 mol% TiCl<sub>3</sub>); (e) re-H (0.2 mol% TiCl<sub>3</sub>).



G.S. McGrady and C.M. Jensen U.S. Patent Application 60/945,650.

#### H<sub>2</sub> Desorption from Ti-Doped LiAIH<sub>4</sub>

- 0.5-0.2 mol% Ti optimal
- ~7 wt% H at 80-180 °C
- Excellent kinetics

Xi. Liu, G.S. McGrady, H. W. Langmi, C.M. Jensen; *J. Am. Chem. Soc.* **2009**, 131, 5032.



TPD plots for LiAlH<sub>4</sub> samples: (a) as-received; (b) milled with 2.0 mol% TiCl<sub>3</sub>; (c) re-H (2.0 mol% TiCl<sub>3</sub>); (d) re-H (1.0 mol% TiCl<sub>3</sub>); (e) re-H(0.5 mol% TiCl<sub>3</sub>); and (f) re-H (0.2 mol% TiCl<sub>3</sub>).



# WTT energy efficiency approach 70% US DOE target for off-board recharging!

- Energy for compression of Me<sub>2</sub>O and H<sub>2</sub> is ~ 1/5 that of H<sub>2</sub> production.
- High ~ 5M solubility of LiAlH<sub>4</sub> in Me<sub>2</sub>O is the key in high efficiency.



**Primary Energy and WTT Efficiency** 



Ti-doped LiAlH<sub>4</sub> shows a drop in capacity over several cycles due to formation of  $Ti_xAl_{1-x}$  phase.



Cycle performance of hydrogenatedLiH/Al/TiCl<sub>3</sub> (1:1:0.005). (a) Cycle 1; (b) Cycle 2; (c) Cycle-3.

#### MAS <sup>11</sup>B NMR

> XRD not generally used due the highly amorphous nature of boranes and bororhydrides.

> MAS <sup>11</sup>B NMR spectroscopy allows detection and differentiation of all the boron containing species that are present.



- > Full Hydrogenation of MgB<sub>2</sub> beyond MgB<sub>12</sub>H<sub>12</sub> to Mg(BH<sub>4</sub>)<sub>2</sub>
- > One major boron containing product is observed.
- > Chemical shift of -41 ppm:  $Mg(BH_4)_2$ .
- > Minor signal observed for MgB<sub>12</sub>H<sub>12</sub>, at -24 ppm, represents < 5% of product mixture.
- > Not clear if the catalyzed reaction pathway is the same as the uncatalyzed pathway.