Lightweight Metal Hydrides for Hydrogen Storage

DOE Award #: DE-FC3605GO15062

J.-C. Zhao (PI)

Xuenian Chen, Zhenguo Huang, Hima K. Lingam, Teshome Yisgedu, Beau Billet, Sheldon Shore

The Ohio State University

May 12, 2011

Project ID #: ST032

Program Overview

Timeline

 Project start date: March 2005

 Project end date: August 2011

90% Percent complete:

Budget

Total Project Funding: \$4.5M

– DOE Share: \$3.6M

– OSU Share: \$0.9M

 Funding Received for FY10 \$700K (DOE), \$175K (OSU-Cost)

Funding for FY11: \$212K

Barriers

- Right heat of formation (J)
- Absorption / desorption kinetics (E)
- Reversibility for borohydrides (D, P)

Partners/Collaborations

- Members of DOE MHCoE
- Collaborations with ORNL, NIST, Caltech, UTRC, SNL, and Univ. of Utah, Univ. of Washington, and Ford.

Objectives & Relevance

Overall	Discover and develop a high capacity (> 6 wt.%) lightweight hydride capable of meeting or exceeding the 2015 DOE/FreedomCAR targets.
FY10	 Study the <u>structure</u> and hydrogen storage properties of AIB₄H₁₁;
	 Synthesize and study AIB₅H₁₂ and AIB₆H₁₃ for hydrogen storage property measurements;
	Synthesize and study other borane compounds.
FY11	 Complete structure analysis for AIB₄H₁₁
	 Perform study on the absorption & desorption kinetics and catalytic effects to improve the reversibility of AIB₄H₁₁;
	Complete a final report.

This project is directly exploring materials to meet the DOE 2015 hydrogen storage targets

Approach

- Study aluminoborane compounds such as AIB₄H₁₁ for hydrogen storage;
- Study the crystal structures and the decomposition mechanisms using multiple techniques such as interrupted PCT tests, NMR, IR, DSC, and residual gas analysis;
- Develop reversibility strategy from detailed mechanistic understanding of the complex desorption processes (such understanding is crucial for reversibility of all borohydrides);
- Synthesize new hydrides and complexes in collaboration with ORNL, NIST, Northwestern, JPL, Caltech, and Sandia.

Background on AIB₄H₁₁

- Low desorption temperature (starts ~120°C), 13.5 wt.% H₂ with small amounts of B₂H₆ (~1 vol.% gas).
- DSC shows endothermic desorption: thermodynamically reversible.
- Clearly demonstrated partial reversibility using PCT, IR and NMR at mild conditions.
- Amorphous structure with polymerization.

Technical Accomplishments

amorphous and polymeric...there is nothing like it known...

- Solution NMR
- IR
- Reactivity
- Mechanism

Prototype electrostatic ground state (PEGS) + DFT simulations

Solid-state NMR

Structure of AIB₄H₁₁

Neutron vibration spectroscopy

Valence bond theory

Mass spec

Neutron total scattering spectroscopy (NOVA) analysis

- AIB₄H₁₁ not soluble in most of the solvents.
- · We analyzed the residual reaction solution for structure information.
- The ¹¹B NMR from AIB₄D₁₁ shows at least two different boron units.
- The ¹¹B NMR chemical shifts consistent with solid state NMR.

- The 27 Al NMR shows additional peaks in addition to that of Al(BD₄)₃.
- Some peaks consistent with solid-state NMR, but other peaks couldn't be explained at this point.

- The ²H NMR also shows additional peaks in addition to that of Al(BD₄)₃.
- More refined details about ²H signals revealed by solution NMR.

Prototype electrostatic ground state: PEGS

Majzoub & Ozolins: Phys. Rev. B 77 (2007) 104115.

PEGS

Hamiltonian

$$E_{\text{tot}} = \sum_{i>j} \frac{Q_i Q_j}{R_{ij}} + \sum_{i>j} \frac{\varepsilon_{ss}}{R_{ij}^{12}}$$

Coulomb Soft-sphere

- Annealing Monte-Carlo
- · PEGS+DFT procedure

Yongsheng Zhang Yongli Wang Chris Wolverton

Global min.

Lowest energy structures from PEGS + DFT

Stru-3 Stru-5

Chain: $[BH_4]+[BH_3]+2[BH_2]$

 $[BH_3]+2[BH_2]$ forms

Chain:[BH4]+2[BH3]+[BH]Cluster: [AIH]+2[BH3]+[BH2]+[BH]

2[BH3]+[BH] forms a B-B circle

[BH₃]+[BH₂]+[BH] forms a B-B circle

-68.584 eV

a B-B circle

-68.347 eV

-68.166 eV

Technical Accomplishments

Expt. IR

Computed phonon density of state for structure 6

Yongsheng Zhang Yongli Wang Chris Wolverton

Neutron vibration spectra: experiment vs. calculation

Benchmark:

Even for well-determined singlecrystal structures, the theoretical neutron vibration spectra from DFT calculations still show appreciable deviations from experimental ones.

Wei Zhou & Terry Udovic

Neutron vibration spectra: experiment vs. calculation

- Good overall agreement between experimental and calculated NVS of structure 6.
- We are very close to the right structure.

$$AIB_4H_{11}(s) + NH_3(I) \rightarrow B_3H_8^- + BH_4^-$$

- The existence of B₃ unit was confirmed.
- Two different boron environments consistent with structure 6

Technical Accomplishments

Two Al signals/environments are inconsistent with structure 6

Technical Accomplishments

Surround B2: 5 bonds, B2-AI, 3x B2-H, B2-B1-B4;

The total valence electron number in each unsymmetrical unit:

$$3 (AI) + 4 \times 3 (B) + 11 \times 1(H) = 26$$

The bond numbers in each unsymmetrical unit:

7 normal bonds (2x B3-H_t, Al-B2, B2-H_t, B1-H_t, 2 x B4-H_t)

7 three center-two electron bonds (2x Al- H_b -B3, Al-B4-B1, Al- H_b -B1, Al- H_b -B2, B2- H_b -B4, B1-B2-B4).

So 14 bonds need 28 electrons but only 26 electrons are available.

Valence bond analysis shows that Structure 6 needs improvement.

Technical Accomplishments

- Two types of boron environments (BH₄ and a triangular B-B-B unit) are clearly identified from both solution NMR and solid state NMR as well as PEGS+DFT calculations.
- We are very confident that the boron units in AIB₄H₁₁ are already clearly identified.
- Structure 6 needs modification to incorporate two AI environments.
- Bond valence analysis also suggests that structure 6 needs modification.
- A new set of PEGS + DFT calculations was performed at Northwestern based on the above information and produced a new two formula unit structure (denoted as 2fu_structure, ~ 400 meV lower energy than structure 6)

Yongsheng Zhang Yongli Wang Chris Wolverton

Technical Accomplishments

Yongsheng Zhang Yongli Wang **Chris Wolverton**

Neutron vibration spectra: experiment vs. calculation

Good overall agreement between experimental and calculated NVS of 2fu_structure.

Technical Accomplishments

Brief Summary of AIB₄H₁₁ Structure Analysis:

- We are very confident that the two boron units (BH₄ and a triangular B-B-B unit) in AlB₄H₁₁ are already clearly identified.
- The new 2fu_structure has two Al environments.
- AIB₄D₁₁ made for NOVA analysis which will provide radial atom distribution information for structure refinement.
- We probably got the right structure or are very close the right structure.

AIB₆H₁₃ 12.5 wt.% H

Technical Accomplishments

Large amount of B₂H₆ formation during desorption makes AlB₆H₁₃ unsuitable for hydrogen storage

$NaB_3H_8 - 12.6$ wt.% H

- Safe (B₂H₆ and BF₃ free) synthesis developed for unsolvated NaB₃H₈.
- Thermal decomposition gives of a significant amount of borane species.
- Unsuited for reversible onboard hydrogen storage.
- Structure identified (*Pmmm*).

$NaB_3H_8 - 12.6$ wt.% H

¹¹B NMR spectra of water solution

- > 50 % NaBH₄ hydrolysed over a day
- < 10 % NaB₃H₈ hydrolysed over a week.

- Hydrolysis produces high (10.5) wt.% pure H₂.
- High solubility and good stability in H₂O.
- Cobalt-based catalyst effective for hydrolysis.
- Better than NaBH₄ (7.5 wt.% H) and NH₃BH₃ (5.1 wt.% H) for hydrolysis (solubility in water considered).

$NH_4B_3H_8 - 20.5$ wt.% H

$$NH_4Cl + NaB_3H_8 \rightarrow NH_4B_3H_8 + NaCl$$

- Thermal decomposition exothermic not suited for onboard reversible storage.
- Thermal decomposition gives of a significant amount of borane species.

$NH_4B_3H_8 - 20.5$ wt.% H

Technical Accomplishments

- Hydrolysis produces high (7.5 wt.%) pure H₂.
- High solubility and good stability in H₂O.
- Cobalt-based catalyst effective for hydrolysis.
- Better than NaBH₄ and NH₃BH₃ for hydrolysis.

1 mol % noble metal 4 mol % transition metal

 $NH_4B_3H_8(s) + 6H_2O(1) \xrightarrow{cat.} NH_4^+(aq) + 3BO_2^-(aq) + 2H^+(aq) + 9H_2(g)$

7.5 wt.% H (including H₂O weight)

Summary

• **AIB**₄**H**₁₁ (13.5 wt.% H):

- We mounted a multi-pronged structure analysis of AIB₄H₁₁ in close collaboration with Northwestern and NIST using solution NMR, solid state NMR, IR, neutron vibration analysis, chemical analysis, bond valence analysis, and PEGS+DFT simulations.
- Two boron units (BH₄ and a triangular B-B-B unit) in AlB₄H₁₁ are already clearly identified from both solution NMR and solid state NMR as well as PEGS+DFT calculations; and solution ²⁷Al NMR suggests two Al environments.
- We think we got the correct structure or we are very close to get the correct structure.
- AIB₄D₁₁ is made for NOVA analysis which will provide radial atom distribution information for structure analysis.

Summary (continued)

• AIB₄H₁₁ (continued):

- We performed catalyst screening for AIB₄H₁₁, but found no effective catalysts so far.
- Structure information will provide more insights into hydrogen interaction mechanisms and clues for catalyst exploration.

• AIB₆H₁₃

- We finally synthesized this compound for the first time since the 1981 Himpsl and Bond paper.
- IR consistent with Himpsl and Bond data
- DSC similar to that of AIB₄H₁₁.
- Large amount of B₂H₆ found by TGA-MS.
- Probably not a good candidate for reversible hydrogen storage.

Summary (continued)

• NaB₃H₈:

- Safe (B₂H₆ and BF₃ free) synthesis developed for NaB₃H₈.
- Thermal desorption gives of large amount of borane species.
- Unsuited for reversible onboard hydrogen storage.
- Hydrolysis produces high wt.% (10.5) pure H₂, Better than NaBH₄
 (7.5 wt.% H) and NH₃BH₃ (5.1 wt.% H)
- High solubility and good stability in H₂O.
- Cobalt-based catalyst effective for hydrolysis.

• NH₄B₃H₈

- Thermal decomposition exothermic and gives of a significant amount of borane species – not suited for reversible H₂ storage.
- Hydrolysis produces high wt.% (7.5 wt.%) pure H₂.
- High solubility and good stability in H₂O.
- Cobalt-based catalyst effective for hydrolysis.
- Better than NaBH₄ and NH₃BH₃ for hydrolysis.

Future Work

<u>FY11</u>

- Compete the structure identification of AIB₄H₁₁.
- Based on structural information, study the hydrogen absorption and desorption mechanisms.
- Based on structure and mechanisms, perform screening of catalysts for improved reversibility.
- Provide property data to DOE Hydrogen Storage Engineering Center.
- Write a final report.

Collaborations

- Strong collaborations among OSU, Northwestern and NIST are crucial for the identification of the AlB₄H₁₁ structure.
- ORNL and OSU collaborate on synthesis and characterization of both AlB₄B₁₁ and AlB6H13. Samples were analyzed at OSU, ORNL, JPL and Caltech for hydrogen desorption and structures (via NMR).
- AIB₄H₁₁ synthesized at OSU was sent to NIST for neutron analysis.
- Mg(BH₄)₂ and Li₂B₁₂H₁₂ synthesized at OSU was provided to UTRC and HRL for nano-framework encapsulations.
- Mg(BH₄)₂ synthesized at OSU was sent to University of Washington for solid state NMR analysis and to NIST for TEM analysis.
- Several compounds synthesized at OSU were sent to Sandia for analysis using STMBS (simultaneous thermogravimetric modulated beam mass spectrometry).
- (NH₄)₂B₁₂H₁₂ synthesized at OSU was sent to Ford for further study.
- Initiated collaboration with Kyushu University for NOVA analysis of AlB₄D₁₁.

A close collaboration among OSU, Northwestern, NIST and ORNL led to the progress.

