

# Hydrogen Storage through Nanostructured Porous Organic Polymers (POPs)

Di-Jia Liu<sup>1</sup>, Shengwen Yuan<sup>1</sup>, Desiree White<sup>1</sup>, Alex Mason<sup>1</sup>, Briana Reprogle<sup>1</sup>, Zhuo Wang<sup>2</sup> & Luping Yu<sup>2</sup>

> <sup>1</sup>Argonne National Laboratory <sup>2</sup>The University of Chicago

DOE Hydrogen Program Annual Merit Review and Peer Evaluation Meeting Washington, D.C., May 9-13, 2011

Project ID ST050





## Overview

## Timeline

- Project start: July 2007
- Project end: October 2011
- % complete: 75%

## **Budget**

- Total project funding: \$2 Million
  - DOE share: \$1.88 Million
  - Contractor share: \$120 K
- Funding received in FY2010
  - \$500 K
- Funding for FY2011
  - \$400 K

## **Barriers**

- Barriers addressed
  - A. System Weight and Volume
  - B. System cost
  - C. Efficiency
  - D. Durability/Operability

## **Partners**

- Interactions/collaborations
  - Argonne National Laboratory (Lead)
  - U of Chicago (Subcontractor)
  - HSCoE Members
    - NREL
    - UNC
  - Non HSCoE Members
    - U of Hawaii (Sample exchange)
    - GM (Sample exchange)

2

## **Objective - Relevance**

- To design, synthesize, and evaluate nanostructured porous organic polymers (POPs) as new hydrogen storage adsorbents for transportation applications
- To support polymer materials development with modeling/simulation and advanced structural characterizations

# Potential Advantages of POP H<sub>2</sub> Adsorbent & Their Impact on Technology Barriers

- System Weight and Volume POPs are light weight and can be converted to high volumetric density by engineering process such as compression, pelletizing, etc.
- System Cost POPs can be scaled-up for industrial production with the existing infrastructure at competitive cost.
- Efficiency POP-H<sub>2</sub> interaction is based on physi-adsorption/desorption principle with minimum parasitic energy consumption.
- Durability/Operability POPs are stable under the temperature and humidity conditions required for hydrogen storage application.

## **Approach - Milestones**

| Month/<br>Year | Milestones                                                                                                                             | Status Update                                                                                                                                                                       |  |  |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 11/10          | Complete the design, synthesis, and characterization of B-doped POPs                                                                   | <b>80% Completed</b> . Surface properties, $H_2$ storage capacities and $\Delta H_{ads}$ were Investigated for three new three B-doped POPs. Finding is accepted for publication.   |  |  |  |
| 02/11          | Complete the synthesis of an ultra-high surface area aromatic POPs                                                                     | <b>Completed</b> . Duplicated a literature report on porous aromatic framework as benchmark comparison for POP capacity and heat of adsorption investigation.                       |  |  |  |
| 05/11          | Complete adsorption kinetics and<br>charging time investigation for selected<br>POPs                                                   | <b>Completed</b> . Adsorption/desorption kinetics of two representative POPs were studied.                                                                                          |  |  |  |
| 08/11          | Complete H <sub>2</sub> storage capacity and heat<br>of adsorption optimization through<br>design/synthesis of new metal-doped<br>POPs | <b>60% completed</b> . Seven new transition metal doped POPs were prepared. Measurement of surface property, $H_2$ adsorption uptake and isosteric heat of adsorption 50% finished. |  |  |  |

The focus of FY2011 is to improve and understand the key factor for isosteric heat of adsorption targeting for ambient temperature storage application

4

## Approach - Development Strategy

|   | New Polymer<br>Exploration<br>(UofC/ANL)                     |   | Characterization &<br>Optimization<br>(ANL)                      |   | Modeling &<br>Simulation<br>(ANL)                                                        |
|---|--------------------------------------------------------------|---|------------------------------------------------------------------|---|------------------------------------------------------------------------------------------|
| • | New POP synthesis through rational design at molecular level | • | H <sub>2</sub> storage capacity & heat of adsorption measurement | • | H <sub>2</sub> -POP interaction study via <i>ab</i><br><i>initio</i> , DFTB & MD methods |
| ŀ | Structure characterization                                   | • | Surface property characterization                                | • | Advanced characterization                                                                |
| • | Post synthesis modification                                  | • | Engineering process development                                  |   |                                                                                          |

- Prepare high surface area & narrow/adjustable pore size polymers through rational design and synthesis
- Incorporate "metallic" feature into polymer through conductive backbone or metal doping
- Improve POP-H<sub>2</sub> interaction by incorporating heteroaromatic functional groups
- Develop fundamental understanding through modeling and advanced characterization
- Over 100 POPs in three categories, aromatic, heteroaromatic and metal doped systems with high surface areas and narrow pore size distribution were designed and prepared
- Hydrogen uptake capacities of 0.055 (kg<sub>H2</sub>/kg<sub>ads</sub>) and 0.022 (kg<sub>H2</sub>/L<sub>ads</sub>), and the isosteric heat of adsorption of ~10 kJ/mol were achieved
- The correlations between surface property, H<sub>2</sub> storage capacity and adsorption enthalpy were found through combined experiment/simulation effort for better understanding on H<sub>2</sub>-POP interaction

### Technical Approach - Summary on Hydrogen Storage via Aromatic POPs



- Over 50 aromatic POPs were prepared, high BET surface (> 3200 m<sup>2</sup>/g) and tunable pore sizes (7Å to 10Å) achieved
- H<sub>2</sub> uptakes up to 5.5% at 77K and 0.5% at RT were achieved, heat of adsorptions are usually limited at ~6 kJ/mol
- High SSA leads to higher gravimetric hydrogen uptake at 77 K, but not necessarily higher volumetric uptake

### Technical Approach - Summary on Hydrogen Storage via Heteroaromatic POPs



- Over 30 heteroaromatic POPs were prepared containing B, N, S, etc., high BET surface (> 1000 m<sup>2</sup>/g) and narrow pore sizes (~8Å) achieved
- H<sub>2</sub> uptakes ~ 3% at 77K and the heat of adsorptions > 9 kJ/mol were achieved
- Improvement of  $\Delta H_{ads}$  is element-dependent, for example, S and N  $\rightarrow \Delta H_{ads} \downarrow$ , B  $\rightarrow \Delta H_{ads} \uparrow$

## Technical Approach - Summary on Hydrogen Storage via Metal Doped POPs

POPs with different TM-ligand coordinations were prepared ...



- Over 25 transition metal (Fe, Co, Ni...) doped POPs were prepared with BET surface (~2000 m<sup>2</sup>/g) and narrow pore sizes (~8Å) achieved
- $H_2$  uptakes of ~ 4% at 77K and the heat of adsorptions as high as ~ 10 kJ/mol were achieved
- Incorporating TMs clearly improves the isosteric heat of adsorption. New metals (Ti, Mg, V, etc.) and possibly new coordination chemistry need to be explored to enhance  $\Delta H_{ads}$  in the 15 ~20 kJ/mol range

8

... for direct hydrogen storage evaluation ...

## FY2011 Technical Accomplishment 1 - Design & Synthesis of High Surface Area Carborane-containing POPs

#### **Rationale**

- Computational modeling studies from HSCoE suggest non-dissociative binding energy of 19.2 kJ/mol between H<sub>2</sub> and boron doped carbon cluster (Kim, et. al. *Phys. Rev. Lett.* 2006)
- Isotherm and spectroscopic studies from HSCoE found enhanced △H<sub>ads</sub> over B-doped graphitic carbon (T. Chung, et. al. JACS 2008, A. Kleinhammes, et. al. JPCC 2010)
- High surface area B-doped polymer can serve as precursor of high SSA adsorbent via further activation

#### Synthetic Scheme - An Example



#### HSCoE Studies on H<sub>2</sub> in BC<sub>3</sub> system



Simulation by Cooper/Cheng Airproducts, HSCoE

 $\Delta H_{ads}$  = 12~13 kJ/mol observed by Chung's group



Desired B-C framework Chung – Penn State, HSCoE

# FY2011 Technical Accomplishment 1 - Surface Properties & H<sub>2</sub> Storage Capacity of Carborane-containing POPs







BPOP-1, BET SSA =  $422 \text{ m}^2/\text{g}$ 

BPOP-2, BET SSA =  $864 \text{ m}^2/\text{g}$ 

BPOP-3, BET SSA =  $1037 \text{ m}^2/\text{g}$ 



# FY2011 Technical Accomplishment 1 - Improving $\Delta H_{ads}$ through B-doped POPs

H<sub>2</sub> adsorption isotherms at different T

<u><u>AHads</u> as function of hydrogen uptakes</u>



|        | BET<br>SSA<br>(m²/g) | Langr.<br>SSA<br>(m²/g) | Tot Pore<br>Vol<br>(cm <sup>3</sup> /g) | µ-pore<br>Volume<br>(cm³/g) | Pore<br>Diameter<br>(nm) | H <sub>2</sub> Gr. Uptake<br>@ 77K<br>(kg <sub>H2</sub> /kg <sub>Ads+H2</sub> ) | B/C ratio | ΔH <sub>ads</sub><br>(kJ/mol) |
|--------|----------------------|-------------------------|-----------------------------------------|-----------------------------|--------------------------|---------------------------------------------------------------------------------|-----------|-------------------------------|
| BPOP-1 | 422                  | 592                     | 0.14                                    | 0.04                        | 0.68                     | 0.014                                                                           | 1/1.8     | 10.2                          |
| BPOP-2 | 864                  | 1164                    | 0.57                                    | 0.30                        | 0.76                     | 0.021                                                                           | 1/1.6     | 9.0                           |
| BPOP-3 | 1037                 | 1497                    | 1.12                                    | 0.33                        | 0.77                     | 0.028                                                                           | 1/3.0     | 8.2                           |

•  $\Delta H_{ads}$  improves with higher B content in POPs, but it decays quickly with increase of hydrogen loading

■ Carborane POPs will be evaluated as precursors of adsorbents with improved ∠H<sub>ads</sub> through further activation

## FY 2011 Technical Accomplishment 2 - Design & Synthesis of **TM/Polyporphyrin POPs**

#### Rationale

- Unsaturated transition metal/hydrogen interaction could form H<sub>2</sub>. TM bond, leading to improved heat of adsorption ( $\Delta H_{ads}$ ) without dissociation (Kubas interaction)
- Computational modelings suggest enhanced  $\Delta H_{ads}$  can be achieved by decorating TM in graphene plane (M. Yoon et. al. ORNL) or macrocyclic plane (Kim & Zhang NREL/RPI)
- ANL/UC team successfully prepared and characterized several TM doped POPs with high surface area and narrow pore size distribution



#### Synthetic Scheme: Fe-Co/Por

#### HSCoE theoretical studies on H<sub>2</sub> over TM doped surfaces



V7 x V7 TM-Decorated Graphene Model M. Yoon, et.al., HSCoE - ORNL

Suitable ranges of  $\Delta H_{ads}$  for storage are suggested through non-dissociative binding of H<sub>2</sub>/square-planar TM coordination site



H<sub>2</sub>/HEME Model Kim & Zhang, HSCoE - NREL/RPI



# FY 2011 Technical Accomplishment 2 - Design & Synthesis of TM/Polyporphyrin POPs



## FY 2011 Technical Accomplishment 2 - Improving H<sub>2</sub> Storage Capacity & Heat of Adsorption over TM/Polyporphyrin POPs



■ Transition metal (Ni, Co, and Fe) addition improves *△H<sub>ads</sub>*, mechanism needs to be studied

Other promising metals (Ti, V, Mg, etc. ) need to be explored with different doping method

# FY 2011 Technical Accomplishment 3 - Design & Synthesis of TM/POPs Coordinated through Hydroxyquinoline

#### <u>Rationale</u>

- POPs crosslinked through TM-hydroxyquinoline bonds are very stable towards humidity and other contaminants
- Coordination geometry between TMs and ligand (square-planar vs. tetrahedral) may shed light on hydrogen-metal interaction

#### Synthetic Scheme: Metal Coordinated Hydroxyquinoline



Co/HQ-1, BET SSA: 580 m<sup>2</sup>/g; Ni/HQ-1, BET SSA: 596 m<sup>2</sup>/g

Other TM/HQ POPs was also prepared with high SSAs

The tetrahedral (Co) metal-ligand coordination led to POP with a slightly larger pore size than that with square-planar (Ni) ligation

## FY 2011 Technical Accomplishment 3 - Surface Properties, $H_2$ Storage Capacity & $\Delta H_{ads}$ of TM/HQ-1s



|         | BET SSA<br>(m²/g) | Langr.<br>SSA (m²/g) | Tot. Pore<br>Vol.<br>(cm <sup>3</sup> /g) | µ-pore<br>Volume<br>(cm³/g) | Pore<br>Diameter<br>(nm) | H <sub>2</sub> Gr. Uptake<br>@ 77K<br>(kg <sub>H2</sub> /kg <sub>Ads+H2</sub> ) | ∆H <sub>ads</sub><br>(kJ/mol) |
|---------|-------------------|----------------------|-------------------------------------------|-----------------------------|--------------------------|---------------------------------------------------------------------------------|-------------------------------|
| Ni/HQ-1 | 596               | 807                  | 0.59                                      | 0.22                        | 0.82                     | 0.017                                                                           | 8.0                           |
| Co/HQ-1 | 580               | 786                  | 0.58                                      | 0.22                        | 0.87                     | 0.017                                                                           | 9.9                           |

Co-hydroxyquinoline POP produced a higher isosteric heat of adsorption (9.9 kJ/mol) than its nickel counterpart, suggesting a possible metal dependent H2-TM/POP interaction.

## FY 2011 Technical Accomplishment 4 -Adsorption/Desorption Kinetics Study



Adsorption/desorption time dependence at liquid nitrogen temperature



- The temporal profiles between adsorption and desorption are nearly identical
- The system reaches equilibrium in a faster pace at ambient temperature than 77 K, all within 20 seconds

## Summary Table

#### H<sub>2</sub> storage capacities for selected POPs by Argonne – UofC Team in FY2011

| Sample        | BET SSA<br>(m²/g) | <b>Gr. Uptake</b><br>(77K, 40 bars)<br>(kg H <sub>2</sub> /kg<br>adsorbent+H <sub>2ads</sub> ) | Vol. Uptake <sup>a</sup><br>(77K, 40 bars)<br>(kg H <sub>2</sub> /L<br>adsorbent) | <b>Gr. Uptake</b><br>(RT, 70 bars)<br>(kg H <sub>2</sub> /kg<br>adsorbent+H <sub>2ads</sub> ) | <b>Vol. Uptake</b><br>(RT, 70 bars)<br>(kg H <sub>2</sub> /L<br>adsorbent) | μ-Pore /Total<br>Pore<br>(cm <sup>3</sup> g <sup>-1</sup> / cm <sup>3</sup> g <sup>-1</sup> ) | Skeleton<br>Vol. <sup>b</sup><br>(cm <sup>3</sup> g <sup>-1</sup> ) | <b>⊿H<sub>ads</sub></b><br>(kJmol⁻¹) |
|---------------|-------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------|
| PAF-1 (A)     | 3143              | 0.055                                                                                          | 0.020                                                                             | 0.0053                                                                                        | 0.0018                                                                     | 1.08/2.08                                                                                     | 0.82                                                                | 6.5                                  |
| РТА-З (Н)     | 870               | 0.029                                                                                          | 0.021                                                                             | 0.0024                                                                                        | 0.0017                                                                     | 0.40/0.66                                                                                     | 0.80                                                                | 6.6                                  |
| BPOP-1 (H)    | 422               | 0.013                                                                                          | 0.014                                                                             | 0.0016                                                                                        | 0.0017                                                                     | 0.04/0.14                                                                                     | 0.81                                                                | 10.2                                 |
| BPOP-2 (H)    | 864               | 0.021                                                                                          | 0.014                                                                             | 0.0018                                                                                        | 0.0012                                                                     | 0.30/0.57                                                                                     | 0.94                                                                | 9.0                                  |
| BPOP-3 (H)    | 1037              | 0.027                                                                                          | 0.016                                                                             | 0.0030                                                                                        | 0.0015                                                                     | 0.33/1.12                                                                                     | 0.87                                                                | 8.2                                  |
| Ni/Por-1 (M)  | 1704              | 0.035                                                                                          | 0.021                                                                             | 0.0038                                                                                        | 0.0022                                                                     | 0.66/0.91                                                                                     | 0.85                                                                | 8.0                                  |
| Fe-Co/Por (M) | 1571              | 0.034                                                                                          | 0.022                                                                             | 0.0041                                                                                        | 0.0026                                                                     | 0.63/0.97                                                                                     | 0.65                                                                | 7.4                                  |
| Ni/HQ-1 (M)   | 596               | 0.017                                                                                          | 0.015                                                                             | 0.0019                                                                                        | 0.0017                                                                     | 0.22/0.59                                                                                     | 0.56                                                                | 8.0                                  |
| Co/HQ-1 (M)   | 580               | 0.017                                                                                          | 0.016                                                                             | 0.0019                                                                                        | 0.0017                                                                     | 0.22/0.58                                                                                     | 0.53                                                                | 9.9                                  |

A – Aromatic POP; H – Heteroaromatic POP; M – Metal doped POP

- a. Volumetric capacity is calculated based on the measured skeleton density plus total pore volume density.
- b. Skeleton volume is measured using helium as calibration gas
- c. Rate of  $\Delta H_{ads}$  (kJ/mol) change as function of gravimetric uptake  $C_g$  (%) at ambient temperature near the zero coverage point.
  - System with the highest gravimetric capacity does not necessarily have the highest volumetric capacity
  - Transition metal and boron doping can improve adsorption enthalpy

## Collaboration

#### Partnership within and outside of Hydrogen Sorption Center of Excellence

- Teaming between Argonne National Laboratory (prime) and The University of Chicago (subcontractor)
- Members of DOE HSCoE under the clusters of "Engineered Nanospace" (RC1) and "Substituted Materials" (RC2)
- Collaboration with UNC (HSCoE member) on <sup>1</sup>H NMR experiment
- Collaboration with NREL (HSCoE member) on measurement validation
- Information exchange with ORNL (HSCoE member) and RPI on computational modeling and simulation

### **Technology Transfer through HSCoE**

- Valuable inputs on our adsorption apparatus test validation
- New ideas and direction, examples include B and metal doped polymers
- Collaboration opportunities in polymer characterization, examples include NMR study
- Up-to-date information on new developments in sorption based materials

## **Future Work**

- Complete the investigation on TM exchanged polyporphyrin POPs
- Complete the investigation on improving heat of adsorption for B-doped POP via activation
- Evaluate potential application of other emerging technologies to sorption based hydrogen storage and recommend further research direction to DOE
- Prepare final project report

#### **FUTURE DIRECTION**

- POP is becoming a great platform as hydrogen adsorbent due to its high surface area and narrow pore (vs. carbon) and excellent chemical stability (vs. MOF)
- Unmodified aromatic POPs will unlikely reach desired H<sub>2</sub> adsorption enthalpy for room temperature application even with increased surface area or adjustable porosity
- To achieve near-ambient temperature application, the surface of POP needs to be modified by incorporating metal or other elements promoting H<sub>2</sub> binding
- New surface modification techniques, departing from the conventional synthetic approaches, have the potential to produce high binding energy sites predicted by theory
- POPs with tailored surface property and chemical composition can also serve as precursor of fabricating new adsorbent after additional chemical/physical processing