

Standardized Testing Program for Solid-State Hydrogen Storage Technologies

Michael A. Miller Institute Scientist

Richard Page Institute Scientist

Southwest Research Institute[®] National Testing Laboratory for Solid-State Hydrogen Storage Technologies San Antonio, TX

DOE Annual Merit Review, Washington DC May 9-13, 2011

This presentation does not contain any proprietary or confidential information

Project ST054

Overview

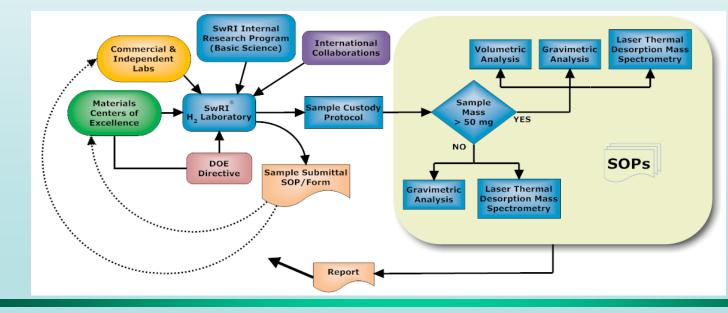
Timeline

<u>Phase I</u>

 Program Start: March 2002 Program End: September 2006 100% Complete Phase II Program Start: October 2006 Program End: March 2012 85% Complete 	 "Gold Standard" Measurements Verification of Material Performance (P) Understanding of Physisorption & Chemisorption Processes (Q) Reproducibility of Performance Verification of System Performance (Q) Reproducibility of Performance (Q) Reproducibility of Performance (K) System Life-Cycle Assessment Codes & Standards (F)
BudgetPhase I	 Partners / Collaborations INER (Taiwan) NESSHY (EC-JRC) Washington State University U. Idaho GoNano Technologies, Inc.

Barriers

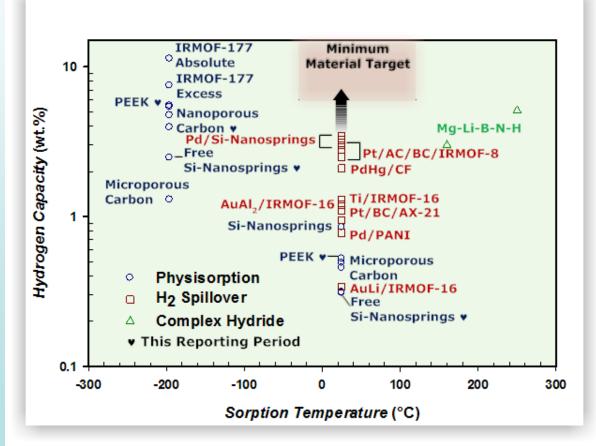
Standardization of Methods


*

Objectives - Relevance

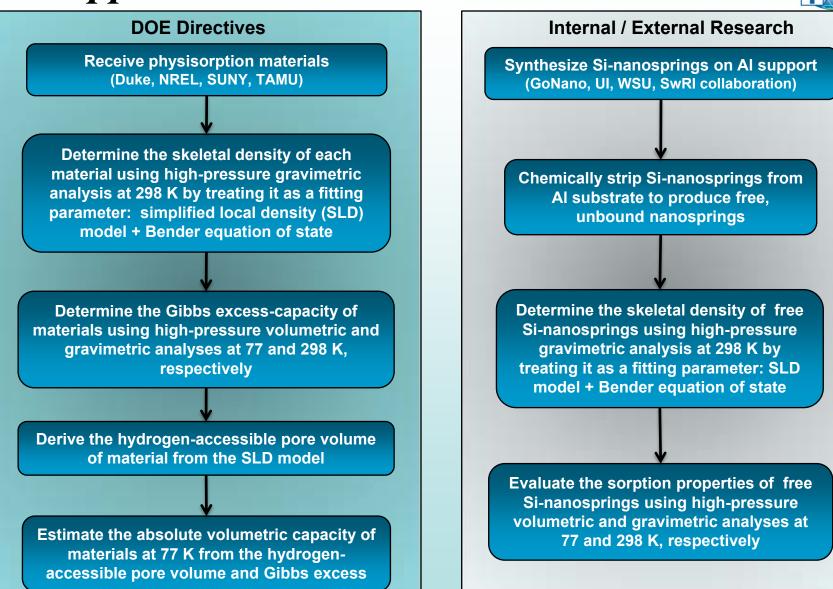
<u>Overall</u>

- Support DOE's Hydrogen Storage Program by operating an independent national-level laboratory aimed at assessing and validating the performance of novel and emerging solid-state hydrogen storage materials and full-scale systems
- Conduct measurements using established protocols to derive performance metrics: capacity, kinetics, thermodynamics, and cycle life
- Support parallel efforts underway within the international community, in Europe and Japan, to assess and validate the performance of related solid-state materials for hydrogen storage
- Validate the technologies required to achieve the 2015 DOE on-board vehicle hydrogen storage goals
- Continue new hydrogen storage materials discovery R&D for advanced storage systems


Objectives - Relevance

<u>Current</u>

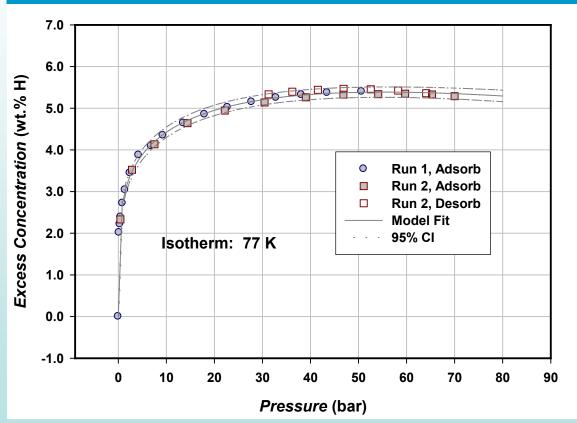
Analyze hydrogen sorption properties at 77 and 298 K of:


- CO₂-activated PEEK-derived carbon (material provided by Duke Univ.)
- PEEK-derived carbon (material provided by SUNY)
- Microporous carbon (material provided by NREL)
- Glass nanosprings (material provided by GoNano[™])
- ➢ Porous Polymer Network (PPN) ⇒ analysis underway (material provided by TAMU)

Status of Material Technologies for Reversible Hydrogen Storage via Physisorption, Spillover, and Chemisorption – In Proximity to DOE Target

Approach

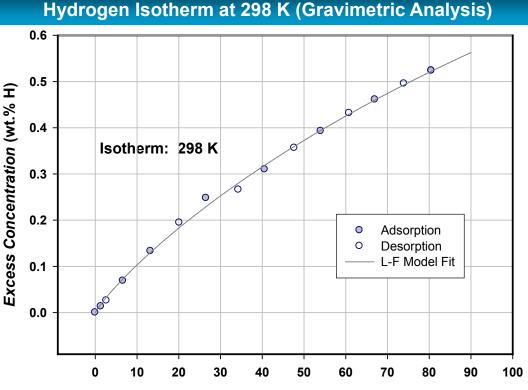
DOE Annual Merit Review Meeting, Washington DC, May 9 - 13, 2011


ACCOMPLISHMENTS IN RESPONSE TO DOE PRIORITIES & DIRECTIVES

Evaluate/Validate Hydrogen Sorption in CO₂-Activated PEEK-Derived Carbon (Material Provided by Duke Univ.)

- Isotherm curves were corrected for the free volume of the sample (or skeletal density), as determined by gravimetric analysis
- Kinetics are relatively fast, reaching steady-state conditions within ~ 20 min
- Peak uptake of 5.39 wt.% at 55 bar
- No evidence of hysteresis
- Further verification and accuracy check of skeletal volume (and density) was done at 298 K via gravimetric analysis
- Pore volume derived from gravimetric analysis was used to estimate volumetric capacity

Corrected Hydrogen Isotherms at 77 K (Volumetric Analysis)


Evaluate/Validate Hydrogen Sorption in CO₂-Activated PEEK-Derived Carbon (Material Provided by Duke Univ.)

- Isotherm at 298 K (gravimetric technique) was used to cross-check skeletal density and to semiempirically predict pore volume
- Peak uptake of 0.52 wt.% at 80 bar
- Simplified Local Density (SLD) model combined with Bender Equation of State (BEOS) were employed to estimate pore volume

H₂-Derived Skeletal Density (g/cc) 3.92

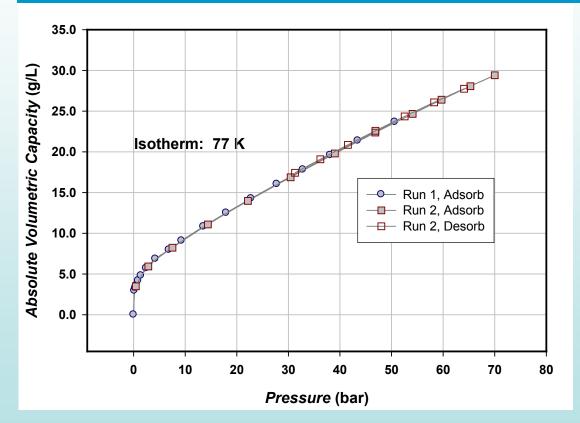
SLD Model for Gravimetric Gibbs Excess

$$W_{a} - W_{sb} \left(1 - \frac{\rho_{g}}{\rho_{sb}} \right) - W_{s} \left(1 - \frac{\rho_{g}}{\rho_{s}} \right) = V_{ad} \left(\rho_{ad} - \rho_{g} \right) \equiv \Gamma$$

Gibbs Excess

Pressure (bar)

Evaluate/Validate Hydrogen Sorption in CO₂-Activated PEEK-Derived Carbon (Material Provided by Duke Univ.)

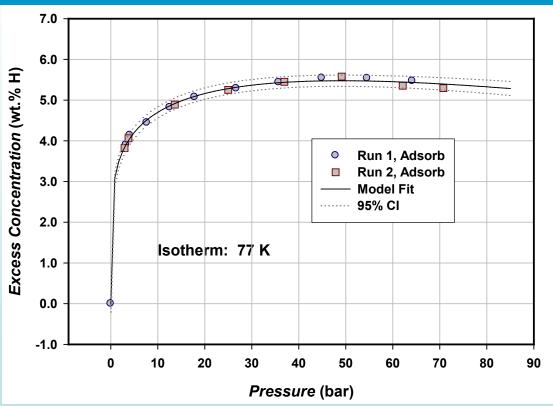

- Absolute volumetric capacity at 77 K approaches 30 g/L at 70 bar
- Absolute capacity estimated by:

$$n_{abs} = n_{ex} + \rho_{bulk} V_{pore}$$

- *n*_{abs} not directly accessible by experiment (semi-empirically determined from gravimetric measurement and SLD model)
- $\ \, \bullet \ \ \, \rho_{\text{bulk}} \text{ determined from BEOS}$

H ₂ -Derived	Total Pore		
Specific Pore	Volume		
Volume (cc/g)	(cc)		
6.62	13.16		

Absolute Volumetric Capacity at 77 K (Volumetric Analysis)



Evaluate/Validate Hydrogen Sorption in PEEK-Derived Carbon (Material Provided by SUNY)

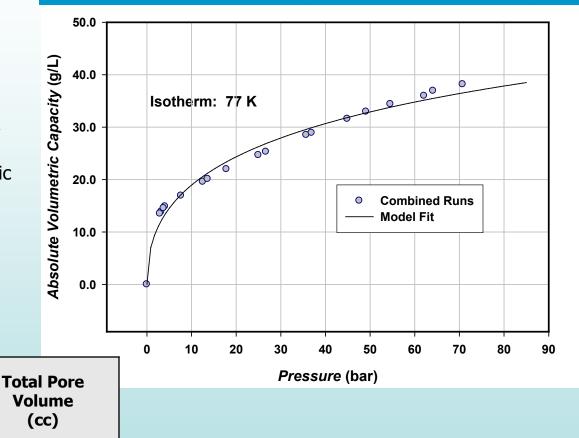
- Helium has measurable uptake in this material, leading to erroneous measurement of the skeletal density
- Hydrogen isotherms measured at 298 K via the gravimetric technique and SLD model were used to accurately determine skeletal density
- Isotherm curves at 77 K were corrected for the free volume of the sample (or skeletal density), as determined by gravimetric analysis
- Peak uptake of 5.50 wt.% at 49 bar

Corrected Hydrogen Isotherms at 77 K (Volumetric Analysis)

2.32

Evaluate/Validate Hydrogen Sorption in PEEK-Derived Carbon (Material Provided by SUNY)

Absolute Volumetric Capacity at 77 K (Volumetric Analysis)


- Absolute volumetric capacity at 77 K approaches 38.2 g/L at 71 bar
- Pore volume derived from gravimetric analysis and SLD model was used to estimate volumetric capacity

H₂-Derived

Skeletal Density

(g/cc)

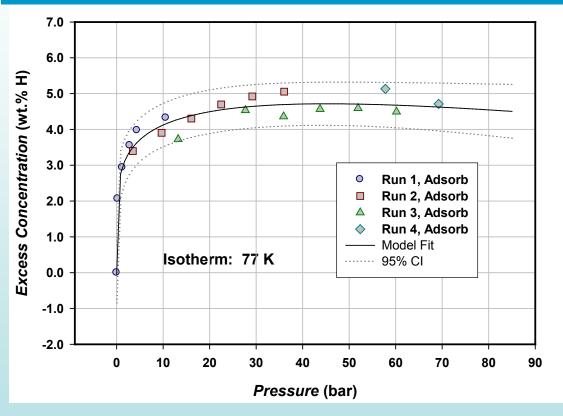
3.70

H₂-Derived

Specific Pore

Volume

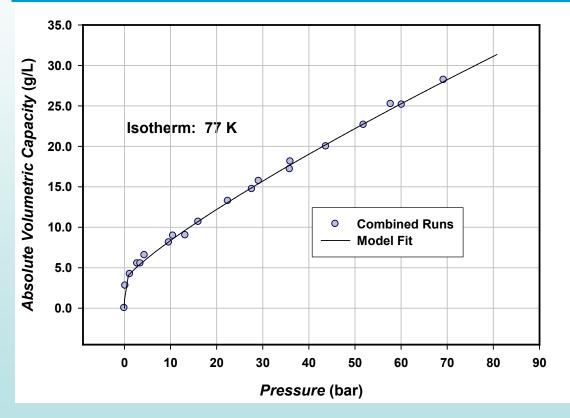
(cc/g)


2.69

Evaluate/Validate Hydrogen Sorption in Microporous Carbon (Material Provided by NREL)

- Four analysis runs were required to build a complete isotherm curve due to slow kinetics (*i.e.*, long equilibration times)
- Material was thermally conditioned in vacuo after each adsorption cycle
- Peak uptake of 4.75 wt.% at 45 bar
- Larger than normal scatter in isotherm curve is due to thermal conditioning between analysis runs

Absolute Volumetric Capacity at 77 K (Volumetric Analysis)

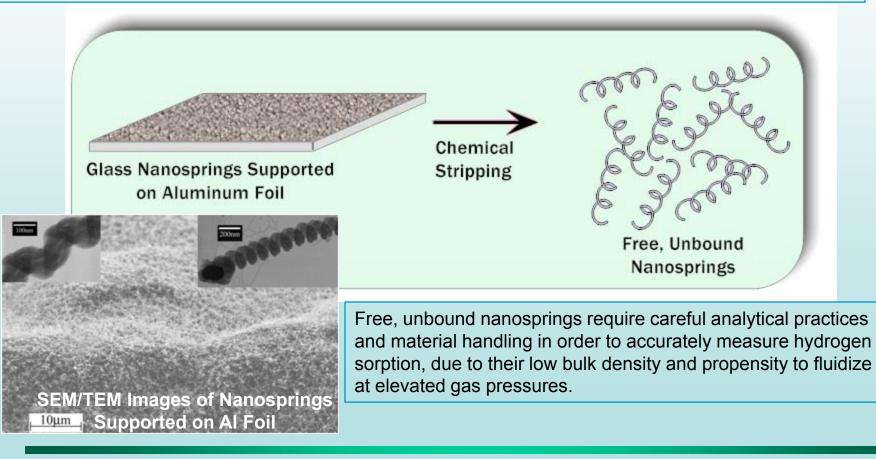


Evaluate/Validate Hydrogen Sorption in Microporous Carbon (Material Provided by NREL)

- Absolute volumetric capacity at 77 K approaches 28.2 g/L at 70 bar
- Pore volume derived from gravimetric analysis and SLD model was used to estimate volumetric capacity

H ₂ -Derived	Total Pore		
Skeletal Density	Volume		
(g/cc)	(cc)		
4.90	1.74		

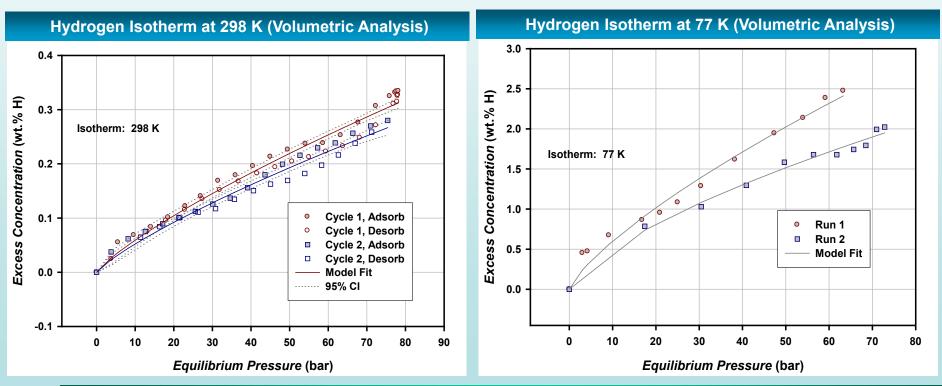
Corrected Hydrogen Isotherms at 77 K (Volumetric Analysis)


ACCOMPLISHMENTS RELATED TO SWRI'S INTERNAL & EXTERNAL RESEARCH COLLABORATIONS

GoNano *Lechnologies, Inc. Accomplishments – External Collaboration*

Hydrogen Uptake in Free Silica Nanosprings

Motivation: Silica nanosprings consist of braided nanowires, forming continuous nano-scale troughs between wires that serve as interstitial sites for physisorption. This work is aimed at gaining a better understanding of the hydrogen sorption behavior of these novel materials by circumventing the analytical challenges previously encountered with measuring hydrogen sorption in Al-supported nanosprings.



GoNano technologies, inc. Accomplishments – External Collaboration

Hydrogen Uptake in Free Silica Nanosprings

- Preparation of free, unbound nanosprings (*i.e.*, not anchored to Al substrate) permits more accurate analysis of hydrogen uptake than has been previously possible with their Al-supported counterparts
- Peak uptake ranges 0.27 0.31 wt.% at 298 K and 75 bar, and 1.75 2.47 wt.% at 77 K and 63 bar
- Adsorption profiles exhibit measureable irreversibility following additional cycles or complete runs with thermal reconditioning, which is consistent with previous measurements for Al-supported nanosprings
- Maximum Gibbs excess not observed at 77 K up to 75 bar

DOE Annual Merit Review Meeting, Washington DC, May 9 - 13, 2011

Future Work (FY11)

Completed

Underway

Sample No.	Organization / Collaborator	Sample Type	Analysis	Date Received	Scheduled Start Date	Estimated Completion Date	Priority	Comments
1	WSU/GoNano Tech.	Pd-Doped Silica Nanosprings	LTDMS / Volumetric, 295 K	9/17/2009	12/3/2009	1/15/2010	Med	Independent Collaboration
2	Duke	Carbon	Volumetric, 77 K	3/25/2010	4/5/2010	4/23/2010	High	DOE Directive
3	NREL	Carbon	Volumetric, 77 K	4/5/2010	4/26/2010	4/30/2010	High	DOE Directive
4	SUNY	Carbon	Volumetric, 77 K	6/22/2010	7/5/2010	7/24/2010	High	DOE Directive
5	TAMU	MOF	Volumetric, 77 K	8/18/2010	10/11/2010	12/6/2010	High	DOE Directive
6	WSU/GoNano Tech.	TiO2-Doped Silica Nanosprings	LTDMS / Grav. / Vol., 295 K	9/17/2009	2/15/2010	5/7/2010	Med	Independent Collaboration
7	WSU/GoNano Tech.	Free Silica Nanosprings	Volumetric, 298 and 77 K	8/27/2010	1/18/2011	2/4/2011	Med	Independent Collaboration
8	NREL	Carbon, Round- Robin Interlaboratory Validation	Gravimetric, 298 K Volumetric, 298 and 77 K	11/16/2010	1/10/2011	4/08/2011	High	DOE Directive
9	TAMU	Porous Polymer	Volumetric, 298 and 77 K	NA	2/14/2011	3/25/2011	High	DOE Directive
10	WSU/GoNano Tech.	Pd-Doped Free Silica Nanosprings	Volumetric / Grav. 298 K	NA	3/21/2011	4/22/2011	Med	Independent Collaboration

Summary

Material	Material Provided by	Surface Exco (wt.9		Absolute Volumetric	MOF-177 Benchmark 77 K	
		298 K	77 K	Capacity (g/L) 77 K	(wt.% H)	(g/L)
CO ₂ - Activated PEEK-Derived Carbon	Duke University	0.52 @ 80 bar	5.39 @ 55 bar	30 @ 70 bar		47 @ 70 bar
PEEK-Derived Carbon	SUNY	0.31 @ 81 bar	5.50 @ 49 bar	38 @ 71 bar	7.5 @ 70 bar	
Microporous Carbon	NREL	0.49 @ 80 bar	4.75 @ 45 bar	28 @ 70 bar		
Free Glass Nanosprings	GoNano, Inc.	0.27-0.31 @ 75 bar	1.75-2.47 @ 63 bar	ND		