Amide and Combined Amide/Borohydride Investigations

Charles James, Christine Erdy, Jose Cortes-Concepcion, and Don Anton (PI)

Savannah River National Laboratory

May 11, 2011

Project ID #: ST070

This presentation does not contain proprietary, confidential, or otherwise restricted information

Overview

Timeline

- ✤ Start: 06/10
- ✤ End: 09/11
- Percent Complete: 63%

Budget

- Funding received in FY10:
 - ***** \$350K
- Funding received in FY 11:
 - ***** \$100K

Barriers Addressed

- ✤ A. Charge/Discharge Rates
- E. System Weight & Volume
- P. Understanding Chemisorption

Partners

- H. zur Loye University of South Carolina
- Hydrogen Storage Engineering CoE Partners

- Perform isothermal/isobaric hydrogenation and dehydrogenation experiments to analyze the effect of composition on the kinetics of the LiMgN system.
- Formulate an outline of discharge and charge conditions to prepare a hydrogen storage system based on the kinetics.
- Modification of LiMgN system through the addition of alkali earth metals in the form of LiMg(NH₂)_x(BH₄)_y, for the possible formation of high hydrogen content bimetallic hydrogen storage systems.
- Prepare a database for use by the Hydrogen Storage Engineering Center of Excellence (HSECoE) to assess the utility of LiMgN in a prototype system.

<u>Overall rxn</u>: LiNH₂ + MgH₂ \rightarrow LiMgN + 2H₂ Δ H_{rxn} = 32 kJ/molH₂¹

- Identified using DFT calculations as potentially reversible with a theoretical H₂ gravimetric storage capacity of 8.2 wt%¹
- Experimentally 8.1 wt% was observed by Lu et al. under moderate temperature (160°C to 220°C) using TGA after jar rolling for 12 to 24 hours²
- The reversible hydrogen absorption reaction involved:

♦ 8 wt% observed experimentally at 160°C and 140 bar

 $LiMgN + 2H_2 \leftrightarrow \frac{1}{2} Mg(NH_2)_2 + \frac{1}{2} MgH_2 + LiH$

- ✤ Dehydrogenation is proposed to proceed through an intermediate step
 ½Mg(NH₂)₂ + ½MgH₂ + LiH → Li_{2x}Mg_{1-x}(NH)₂ + MgH₂ + H₂ → LiMgN + 2H₂
- ✤ Accelerated reversibility has been observed using 4 wt% TiCl₃ dopant²

¹ Alapati *et al.*, *Phys. Chem. Chem. Physics.* 9 (2007) 1438 ² Lu *et al.*, *J. Phys. Chem. C* 111 (2007) 12129

Approach – LiMgN Experimental Plan

- Perform isothermal and isobaric kinetic studies under controlled reaction conditions
- Explore effect of milling technique and modifier composition
 - V_2O_5 and Fe_2O_3 with composition = 1.5 mol%
 - * More current modifiers explored include KH (4 mol%) and LiBH₄ (1.5 mol%)
- * XRD analysis performed on as-milled material and after hydrogenation/dehydrogenation cycles
- ✤ TGA-RGA to determine gas composition during dehydrogenation
- DSC performed on as-milled and cycled material to determine enthalpy of dehydrogenation.
- Deliverable: Experimental data necessary to determine isothermal kinetics, characterize the proposed reaction for hydrogenation and dehydrogenation and database for use by HSECoE to assess the utility of LiMgN in a prototype system

Approach – Material Synthesis and Experimental Procedure

Synthesis

- Starting materials include $LiNH_2$ or LiH, MgH_2 and/or $Mg(NH_2)_2$ and catalysts
- All materials prepared using Fritsch mill rotational or Spex milling techniques
- Fritsch milled for 2 hours at 500 rpm with rotational direction reversed every 30 minutes, Spex milled for 2 hours with a period of rest every 30 minutes

Starting Discharge Procedure

- Reactor placed under high pressure (~ 110 bar) and heated to desired temperature
- Manifold controlled so that the nominal backpressure is equal to 1 bar between the reactor and reservoir.
- Standard discharge condition: 200°C/1 bar/ 6 hrs

Recharge Procedure

- Reactor placed under active vacuum and heated to desired temperature
- Reservoir is pressurized to desired pressure and the reactor is opened.
- Standard charge condition: 180°C/ 100 bar/ 6 hrs

TGA-RGA Procedure

- ✤ Heating rate at 5°C/min from RT to 400°C
- ♦ Looked at mass 2 (H₂), 16 (NH₂⁻), 17 (NH₃/OH) and 18 (H₂O) in RGA

DSC Procedure

• Heating rate at 2°C/min from RT to 400°C

XRD Analysis as function of milling technique w/o modifiers

MgH₂ and LiNH₂ patterns identified

- No indication of reaction or decomposition of starting materials resulting from milling
- The pattern of the Spex milled sample did reveal peak broadening and lower intensity indicating a decrease in particle size and an increase in defects
- The particle size was calculated from XRD patterns, the average MgH₂ particle was reduced from 35.3 nm to 23.6 nm (33% reduction).
- These results are similar to those observed by Liu *et al.* after milling for 2 hours at 500 rpm on the Fritsch mill and Lu *et al.* after milling for 30 minutes on the Spex mill

TGA/RGA results as a function of milling technique w/o modifiers

- Hydrogen desorption for the Fritsch-milled sample started at approximately 135°C; Spex-milled material started at 120°C. Reduction in temperature is attributed to the smaller particle size which resulted in increased surface area and lower surface activation energy
- Difference in max ammonia release attributed to the slow reaction kinetics between MgH₂ and NH₃ from decomposing LiNH₂, the decomposition of unreacted LiNH₂ and/or the self-decomposition of Mg(NH₂)₂

Spex milling increased the ammonia release temperature. It also reduced the amount of ammonia released, further indicating the importance of particle size on desorption kinetics.

Milling technique dependence on H₂ Capacity over 4 cycles

- Spex milling provided a more constant H₂ capacity over 4 cycles and a faster charging rate, which is due to the homogeneity of the material formed during milling supported by XRD analysis that revealed finer crystal size.
- ✤ Fritsch milling promotes an increase in H₂ capacity starting with the 4th cycle.

Discharge/Recharge Rate Dependence on Milling Technique

- Discharge rate is initially 2x faster for Spex milled material due to smaller particle size, but reduces to the discharge rate of Fritsch milled material by the 3rd cycle.
- Average bed recharge rates over 4 isothermal cycles showed strong dependence on milling technique w/the bed recharge rate being 2x greater for Spex milling.

XRD as a function of milling technique (4th cycle)

Charged State XRD:

- Shows that Mg₃N₂ and MgH₂ were the predominate products accompanied by LiH formation.
 - Presence of Mg₃N₂ could indicate incomplete rehydrogenation under 100 bar at 180°C.
- Mg(NH₂)₂ not differentiated from Mg₃N₂
 - Raman: N-H stretching bands at 3273 cm⁻¹and 3326 cm⁻¹ were observed, which are consistent with Mg(NH₂)₂ formation

Technical Accomplishments and Progress – Temperature dependence on H₂ Capacity (4 cycles)

temperatures such as the formation LiMgN versus $Mg_3N_2+Li_3N$.

Technical Accomplishment and Progress – Discharge Rate Temperature Dependence

- Average bed discharge rate over 4 isothermal cycles showed strong dependence on discharge temperature
 - Cycle at a 200 C discharge temperature resulted in relatively constant discharge rate over 4 cycles
 - Cycling at 220°C and 260°C resulted in significant reduction in bed discharge rate after the first discharge, which was attributed to formation of Mg₃N₂ due to loss of ammonia at high temperatures

- ***** At 200°C, XRD results show the formation of MgH₂ and minimal Mg₃N₂ formation.
- At 220°C and 260°C, the decrease in H₂ capacity is due to enhanced Mg₃N₂ formation. The amount of Mg(NH₂)₂ is difficult to differentiate from Mg₃N₂ because of similar XRD patterns.

XRD Analysis of As-milled LiNH₂:MgH₂ w/modifiers

XRD analysis shows that LiNH₂ and MgH₂ were the predominate products and no further decomposition was found during milling with the addition of various modifiers.

Technical Accomplishment and Progress – TGA/RGA results of as-milled LiNH₂:MgH₂ w/oxide modifiers

Modifiers reduced the temperature of the two hydrogen release by 15 to 20°C

Technical Accomplishment and Progress – TGA/RGA results of as-milled LiNH₂:MgH₂ w/KH

Addition of 4 mol% KH decreases the overall weight loss of the material, but decreased the onset temperature of hydrogen release.

Technical Accomplishment and Progress – Effect of Modifiers on Average Discharge/Recharge Rate [gH₂/s]

- Modifiers have no effect on the discharge rate compared to the as-milled unmodified material.
- Fe₂O₃ has no effect on the recharge rate, but the addition of V_2O_5 decreased the recharge rate by 11.6%.

XRD Analysis of Cycled LiNH₂:MgH₂ w/oxide modifiers

Charged State XRD:

- XRD shows that LiH and MgH₂ were the predominate products accompanied by Mg₃N₂ and Metal Oxide formation.
 - Presence of Mg₃N₂ could indicate incomplete rehydrogenation under 100 bar at 180°C.
 - Oxide Reduction was observed with the formation of VO and FeO peaks, but is not fully differentiable from other peaks.

Relevance –

Modified LiMgN systems of the form LiMg(NH₂)_x(BH₄)_y

Overall

Modified LiMgN systems through additions of alkali earth metals in the form of $LiMg(NH_2)_x(BH_4)_y$ have the potential for the formation of high hydrogen content storage materials.

Di-Anionic Complexes: M(BH₄)⁻(NH₂)⁻

- Synthesis of $Li_4(BH_4)(NH_2)_3$ and desorption >10wt% H₂ at 250-350 °C, *Pinkerton et al.*, 2006
- Synthesis of new Li₄(BH₄)(NH₂)₃ [Li₄BN₃H₁₀], by mechanco-chemical milling of LiNH₂ and LiBH₄, *Chater et al.*, 2006
- ★ Theoretical calculations revealed that $Li_4BN_3H_{10} \rightarrow Li_3BN_2 + LiNH_2 + H_2$ is only weakly endothermic, with a $\Delta H \sim 13$ kJ/mol H₂, *Siegel et al.*, 2007
- Evidence of B-H and N-H bond destabilization as compared to the parent LiBH₄ and LiNH₂ structures, *Yang et al.*, 2007
- Impact of Stoichiometry on Hydrogen Storage Properties of $LiNH_2 + LiBH_4 + MgH_2$ Composites,
- Sudik et al., 2009 (Optimal Ratio 3:1:1.5 for H₂ Desorption and Reversible at Ratio 2:1:1 and 2:0.5:1)

Ammoniated Borohydride Complexes: M(BH₄)-·NH₃

Ammonia complex of magnesium borohydride, *Soloveichik et al., 2008*

Amidoborane Complexes: M(NH₂)-BH₃

Calcium amidotrihydroborate as hydrogen storage material, *Burrell et al., 2007*

Approach –

Target system Mg(NH₂)₂ w/large additions of LiBH₄

- Mixtures are formed using planetary ball-milling techniques.
- Identify isothermal/isobaric sorption properties of mixed phases using Sievert's apparatus.
- * XRD analysis after ball milling process and after cycling.
- ★ TGA-RGA to determine composition of hydrogen during dehydrogenation.

Technical Accomplishments and Progress – XRD analysis of mixed Mg(NH₂)₂/LiBH₄

SRNL

Technical Accomplishments and Progress – TGA analysis of mixed Mg(NH₂)₂/LiBH₄

Mixture	Theoretical H ₂ Capacity (wt%)	Total Weight Loss from TGA (wt%)	Change in Capacity (wt%)
LiBH ₄	18.4	11.4	7.0
Mg(NH ₂) ₂ :3LiBH ₄	15.6	16.0	0.4
Mg(NH ₂) ₂ :LiBH ₄	12.8	19.0	-6.2
3Mg(NH ₂) ₂ :LiBH ₄	9.9	20.6	-10.7
Mg(NH ₂) ₂	7.1	32.4	-25.3

RGA analysis of mixed Mg(NH₂)₂/LiBH₄

- Pure $Mg(NH_2)_2$ has negligible release of hydrogen and a large NH_3 release at 400°C.
- $3Mg(NH_2)_2$:LiBH₄ has a single release of hydrogen close to 225°C.
- ★ $Mg(NH_2)_2$:LiBH₄ and $Mg(NH_2)_2$:3LiBH₄ contain a 2-step hydrogen release that is broad and affected by concentration ratio.
- The addition of LiBH₄ mitigates the release of ammonia and lowers the dehydrogenation temperature by 100°C.

Technical Accomplishment and Progress – HSECoE Database for the LiMgN system

- An objective is to assess the kinetics of LiMgN for a prototype system.
- The required information includes the isothermal kinetics and ammonia expected throughout the temperature and pressure envelope of operation.
- The data identified in this project was used to select LiMgN as a potential candidate for a metal hydride prototype system.

Summary

- Milling technique and modifier composition have a significant effect on initial H₂ and NH₃ discharge temperatures and sorption rates
 - Unmodified
 - Spex milling showed improvement from Fritsch milling in recharging rates over 4 cycles
 - Similar discharge rates after first two cycles
 - Oxides
 - ✤ Lowered initial hydrogen release temperature and amount of ammonia release
 - Showed no significant increase in hydrogen sorption rates over four desorption cycles
 - * Resulted from decomposition of oxides during cycling and persistent Mg_3N_2 formation
- Discharge temperature also has a significant effect on sorption rates and product composition
 - & Mg₃N₂ formation predominate in high temperature cycling
- Mixtures of $Mg(NH_2)_2$ with $LiBH_4$ have shown an decrease in the dehydrogenation temperature and an increase in the amount of hydrogen released.

Proposed Future Work

- Couple experimental results with *ab-initio* calculations to identify kinetic enhancing mechanisms in complex metal hydride systems. (Collaboration with Ga Tech and U. of Pittsburgh)
- Investigate the role of additional additives, which have been identified in other studies, on the kinetics using isothermal Sievert's measurements
- Study the role of ammonia release during cycling of (un) modified $LiNH_2$: MgH₂
- Determination of the transformation mechanism in LiNH₂:MgH₂ using Raman and IR spectroscopy and a spallation neutron source. (Collaboration with U. of South Carolina and Rutherford Appleton Laboratory)
- Long-term cyclability studies to determine hydrogen capacity.
- ✤ Regeneration of LiH/Mg(NH₂)₂ using mix H₂/N₂ and H₂/NH₃ gas feeds for prolong cyclability.
- Further investigate the sorption characteristics of the LiBH₄ modified LiMgN system.

Technical Back-Up Slides

Approach – Li-Mg-N-H Quaternary Phase Diagram

Technical Accomplishments and Progress – Average Discharge Rate of Hydrogen Discharge [gH₂/s]

***** Hydrogen discharge rate for TiN continues to increase through four cycles due to:

- The cycled material not being completely homogenized after four cycles resulting in the loss of available surface area for the reaction to occur
- The hydrogen discharge rate decreased drastically for the halide catalysts after the first cycled due to
 - Metathesis reaction between LiNH₂ and $M_{tt}Cl_3$: LiNH₂ + TiCl₃ \rightarrow LiCl + Ti(unknown state) + NH₂

Technical Accomplishments and Progress – XRD Analysis of four cycled 1:1 LiNH₂:MgH₂ ^w/_{w/o} modifiers

- ♦ $Mg(NH_2)_2$, MgH_2 and LiH identified showing LiMgN \leftrightarrow LiH + $\frac{1}{2}$ MgH₂ + $\frac{1}{2}$ Mg(NH₂)₂
- ★ Mg₃N₂ also identified, possibly forming from Mg(NH₂)₂ + 2MgH₂ → Mg₃N₂ + 4H₂ [ΔH = 15 kJ/mol H₂ at 500K, Akbarzadeh, *et al.*, Adv Mat. 19 (2007) 3233] or LiMgN + H₂ → LiH + Mg₃N₂

Technical Accomplishments and Progress – Raman Spectroscopy Analysis

- **As-milled:** High-shift region shows spectrum consistent with LiNH₂ amide stretches
- Discharged: Doublet at 379 (strong) and 341 (weak) cm⁻¹ which closely resembles that of Mg₃N₂; LiMgN reported in literature [Kuriyama, *et al.*, *Phys Rev B* 75 (2005) 233204] not observed due to different crystal structure
 - * Kuriyama observed a cubic disordered antifluorite structure (Fm3m),
 - Instead a nitrogen-vacancy model for antibixbyite-structure (I2₁3) was observed similar to that observed by Yamane, *et al., J of Alloys and Comp* 319 (2009) 124
- **Recharged:** The bands at 3274 and 3330 cm⁻¹ are consistent with the formation of Mg(NH₂)₂

