Development of Low-Cost, High Strength Commercial Textile Precursor (PAN-MA)

May 11, 2011

Dr.–Eng. Felix L. Paulauskas

MS&T Division Oak Ridge National Laboratory Phone: 865-576-3785 Email: paulauskasfl@ornl.gov

Project ID: ST099

This presentation does not contain any proprietary, confidential or restricted information

Project Overview

Timeline

- Start: Mid FY2011
- End: FY2013
- New Project
 - (Planned start: April 1)

Budget

- FY 2011: \$300k
- FY 2012: \$600k
- FY 2013: \$300k
 - This budget is equally split between Vehicle Technologies and Fuel Cell Technologies.

*References "On-board hydrogen storage technical barriers" in the Hydrogen Storage Technical Plan

Barriers*

– System Weight and Volume (A)

ST099

- System Cost (B)
- Materials of Construction (G)
 - High cost of high strength carbon fibers

Partners

- ORNL (Host site)
 - CF expertise
- FISIPE
 - Acrylic fiber manufacturer

Project Objectives

- To develop a low-cost, high strength (600-750 KSI) CF based on a textile-grade PAN precursor.
- This work will represent the fast-track (shorter term) approach in the development of a low-cost, high strength CF.
- This project will significantly leverage the previously successful commodity grade textile based CF project.

ST099 Conventional PAN Processing Stabilization and Oxidation High Graphitization PAN Pretreatment Low Temperature (Optional) (Stretch) Temperature Precursor (Creels) Carbonization Carbonization

Spool (Winders)

Sizing

Surface Treatment

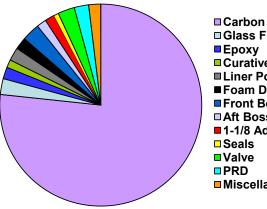
National Laboratory

Typical processing sequence for PAN-based commodity grade CF's

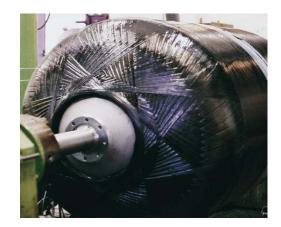
Major Cost Elements Automotive cost target is \$5 - \$7/lb 43% Precursor Tensile property requirements are 250 KSI, 25 MSI, **Oxidative stabilization** 18% 1% ultimate strain Carbonization 13% 15% Graphitization ORNL is attempting major technological 11% Other breakthroughs for major cost elements

Cost Performance Categories

CF's can be divided into 4 broad performance categories


High Performance	>750 KSI > 35 MSI	Performance Driven Cost is not Limiting
	~ 33 IVISI	COSt IS NOT LIMITING
Moderate Grade	500 – 750 KSI	Cost and Performance
	25 – 35 MSI	Balance
High Volume Grade	250 – 500 KSI	Cost Sensitive
	< 25 MSI	Performance Enabling
Non Structural	Chemical & Physical	Usually Low-Cost and
	Properties of Carbon	Chosen for Uniqueness

Most High Volume Industries would require the last 2 Categories



Background

 The CF material represents a significant portion of the overall cost of pressure vessels (> 60%).

Carbon Fiber Glass Fiber Curatives Liner Polymer Foam Dome Front Boss Aft Boss 1-1/8 Adapter Miscellaneous

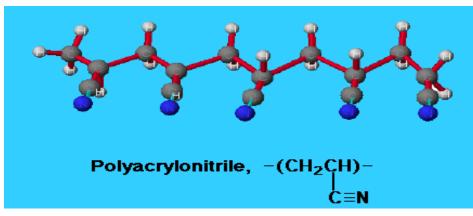
- To meet HFC/VT goals, high strength CF is needed for these pressure vessels. Typically aerospace grade CF with a strength requirement of ca. 700 KSI is needed.
- There is a strong need for a reduction in the cost of CF.
- The rapid development of low-cost CF is a commercial/technological necessity.

6 Managed by UT-Battelle for the Department of Energy

Technical Approach

For the development of low-cost, high strength CF

- This development will be built on the knowledge and expertise gained from the prior low-cost textile CF project.
- In the prior textile project, a comprehensive approach was implemented to achieve the programmatic goals:
 - Changes and modifications of the chemistry of the precursor
 - Optimization of the spinning parameters
 - Development of pretreatment in the precursor
 - Development of the overall conversion recipe of CF's
 - Generation of rapid sampling and testing.
- As a result, the technological foundation has been established, and will be modified to the specific requirements of this new project.



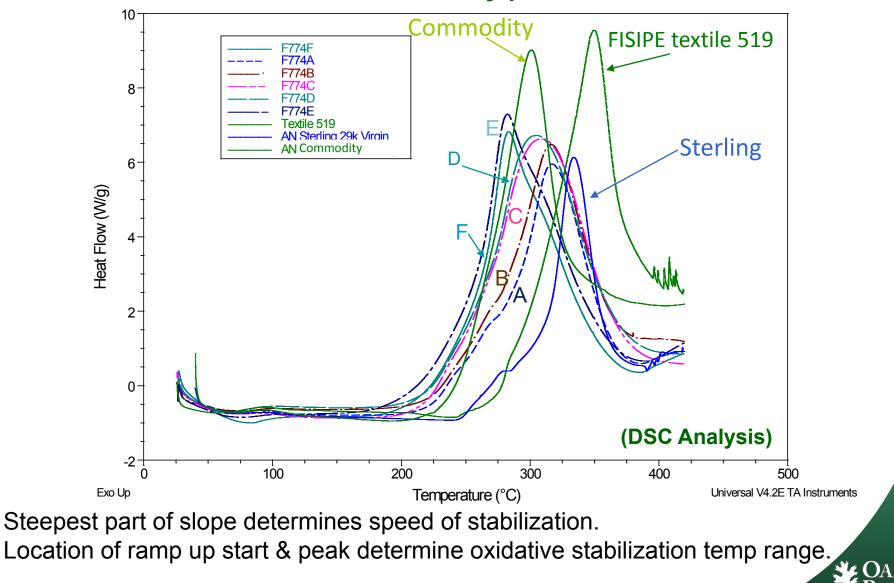
Technical Approach

ST099

For the development of low-cost, high strength CF

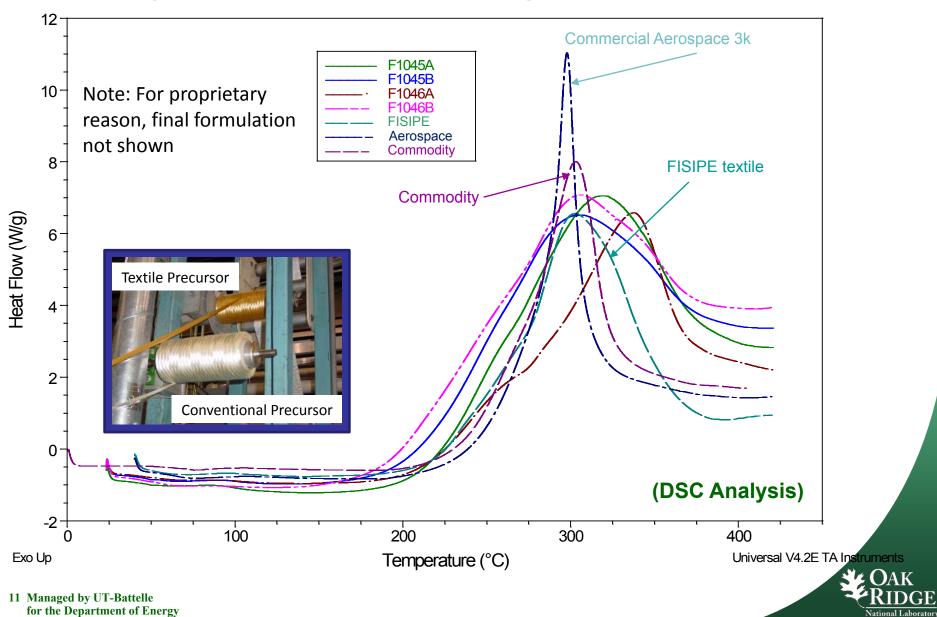
- To make the transition from commodity textile based CF to high strength CF, modifications are required. Some of the required modifications are:
 - The vinyl acetate (VA) in acrylic fiber will be replaced with methyl acrylate (MA) to improve mechanical properties.
 - − The acrylonitrile (AN) content must be \ge 95% by weight.
 - Better quality in the generation of filaments (spinning).
 - Incorporation of additional chemical agents may be required.
 - Demonstrate program property requirements with lower variability, in processing multiple tows.

What is the difference between making ^{ST099} higher performance and industrial grade CF?

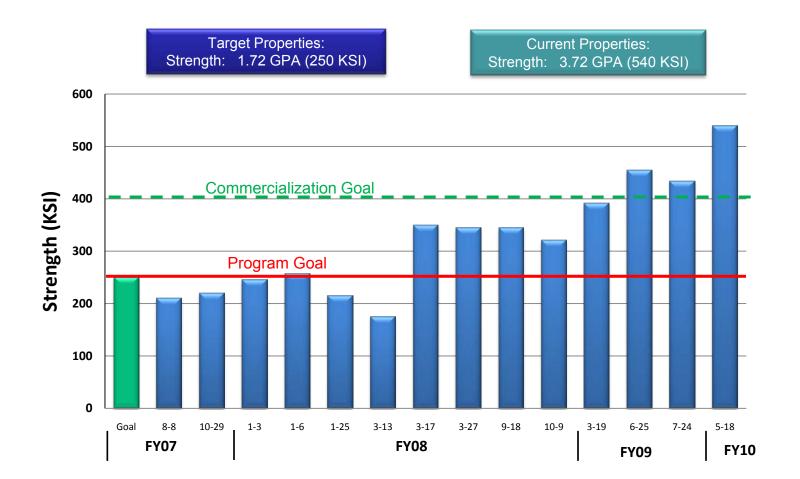

Attribute	Industrial Grade	Aerospace Grade	Cost Impact
Tow Size	12-80K Filaments	1-12K Filaments	Less material throughput
Precursor Content	\cong 93% AN, MA or VA	≥ 95% AN, MA	Little on raw material; slower oxidation
Precursor purity	Can tolerate more impurity	Controls UTS	Slower spinning speed
Oxidation	Quicker due to lower AN	Slower due to higher AN	Time is money, reduced capital & energy cost
Carbonization	Lower Temp	Sometimes Higher Temp	Small impact
Surface treatment	Same but utility affected	Same	None but Load Transfer affects amount of fiber needed
Packaging	Spooled or boxes	Small Spools	More Handling
Certification	None	Significant	Expensive; Prevents incremental Improvements.

Essentially the same process with slightly different starting materials. Not captured is the fact the CF manufacturers are specialty material makers, not high volume.

Typical PAN Formulations


Various chemistries of commodity precursors. Historical Data

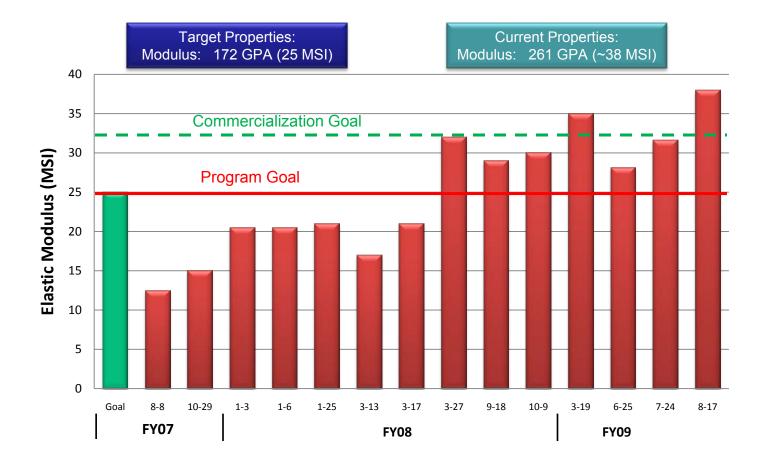
First Textile Formulations


ST099

Different types of textile PAN commodity precursors. Historical Data

Prior Technical Results

FISIPE Commodity Textile PAN Tensile Strength. Historical Data



National Laboratory

12 Managed by UT-Battelle for the Department of Energy

Prior Technical Results

FISIPE Commodity Textile PAN Modulus. Historical Data

ST099

FISIPE Textile-Based PAN Precursor^{ST099}

For commodity-grade carbon fiber

This product is at the initial stages of commercialization.

Splitable precursor band (will generate multiple large tows)

14 Managed by UT-Battelle for the Department of Energy

Large single tow spools, Ready for shipment

ST099

Milestones

Date	Milestone (High Strength CF Project)
July 2011	Down select to most promising precursor formulation based upon test results. Email/Letter report.
August 2011	Conduct first chemical pretreatment trials. Deliver DSC curves and written interpretation.
September 2011 JOULE	Achieve carbonized fiber properties of at least 150 KSI strength and 15 MSI modulus to demonstrate feasibility. Deliver Test Data.

The dates given are under the assumption that work will commence March 1, 2011.

Leveraging

- This high strength CF project will benefit from a decade of prior development in carbon fiber R&D at ORNL:
 - Successful development in revolutionary new approaches to precursor and conversion technology.
 - Significant intellectual property portfolio in CF has been developed at ORNL.
 - Unique physical resources specific to carbon fiber R&D
 - Access to ORNL's extensive materials processing (PES and PL) and characterization capabilities.
 - An extensive network consisting of university and industry partners providing unique strengths and intellectual property contributions in the carbon fiber area.

Unique ORNL Capability

Precursor Evaluation System (PES)

 Designed for development of conventional processing recipes with limited quantities of precursor

- Residence time, temperature, atmospheric composition, and tension are independently controlled in each oven or furnace
- Can process single filament up to thousands of filaments
- Precise tension control allows tensioned processing of ~20-filament tows

ST099

Single stage or multiple stage evaluation during
conversion

Unique ORNL Capability Conventional Pilot Line (PL)

ST099

- 1:20 scale of a commercial grade production line
- **Capacity for 8 tows**
- Upgrades underway for automated operation and production of high strength CF
- Unique capability among FFRDC's and universities

FISIPE (Project Partner)

ST099

- Prominent acrylic fiber manufacturer (in Portugal)
- ORNL and FISIPIE have already conducted extensive work on commodity grade fibers from textile PAN precursor and are currently evaluating large CF tows.
- FISIPE is aggressively pursuing the development of a new textile pan precursor that may be applicable for high strength CF's.
- Based on past experience, FISIPE has become a reliable and responsive partner with quick turnaround.
- For precursor development, FISIPE has a well-equipped and very flexible pilot line.
- FISIPE participates in this project with significant "in-kind" contribution.

Benefits

- Development of a lower-cost, high strength CF based on existing textile-grade PAN precursor manufacturing technology.
- This project will result in the determination of the optimized processing parameter profiles (i.e., concentration, temperature, exposure time) to render the fiber carbonizable by conventional processes into CF.
- Successful completion of this project will result in processing (conversion) protocols transferable to industry.
- An economic evaluation of its potential at this time is premature. Project has just begun.




Summary

- This work addresses a very important barrier in the application of CF – cost.
- This work will develop a new approach for the generation of a CF PAN precursor for high strength. This method offers a higher short-term potential for achieving a significant cost reduction in the generation of this precursor for CF.
- Significant pre-existing technological background will support this project.
- The higher strength, lower-cost fiber developed in this work will be applicable to other industries (wind, infrastructure, etc.).

21 Managed by UT-Battelle for the Department of Energy

Future Work

Rest of FY11

- Continue efforts for the generation of acceptable textile PAN filaments/precursors, that will produce high strength CF.
- FY12
 - Produce higher strength fiber.
- FY13
 - Further optimize properties.
 - Modify production facilities at FISIPE.

Major Program Milestones

Date	Milestone
Sept 2011	Deliver CF's with properties of 150 KSI strength and 15 MSI modulus.
Jun 2012	Deliver CF's with properties of 300 KSI strength and 25 MSI modulus.
Sept 2012	Deliver CF's with properties of 500 KSI strength and 33 MSI modulus.
Sept 2013	Deliver CF's with properties of 650 KSI strength and 35 MSI modulus.

