

U.S. DEPARTMENT OF

Systems Analysis

Fred Joseck

2012 Annual Merit Review and Peer Evaluation Meeting May 14, 2012

Goal & Objective

GOAL: Support infrastructure development and technology readiness through system-level analysis—including evaluating technologies and pathways, guiding the selection of RD&D technology approaches/options, and estimating the potential value of RD&D efforts

OBJECTIVES

- Assess the benefits of hydrogen and fuel cells (on a life-cycle basis) for diverse applications
- Quantify the benefits of integrating hydrogen fuel production with stationary fuel cell power generation
 - Evaluate the potential for biogas, landfill gas, and stranded hydrogen streams
- Evaluate fueling station costs for early vehicle penetration
- Evaluate the use of hydrogen for energy storage and as an energy carrier
- Assess the socio-economic benefits of the Program (e.g., job creation)

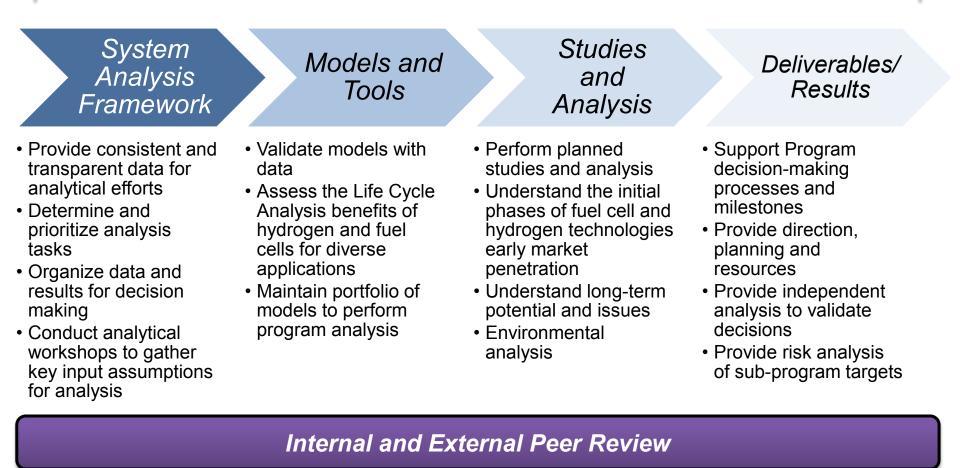
Challenges

Challenges include market complexities and the limited availability, accuracy, and consistency of data.

Future Market Behavior

- Understanding of drivers of fuel and vehicle markets needed for long-term projections
- Models need to adequately address interactions hydrogen/vehicle supply and demand

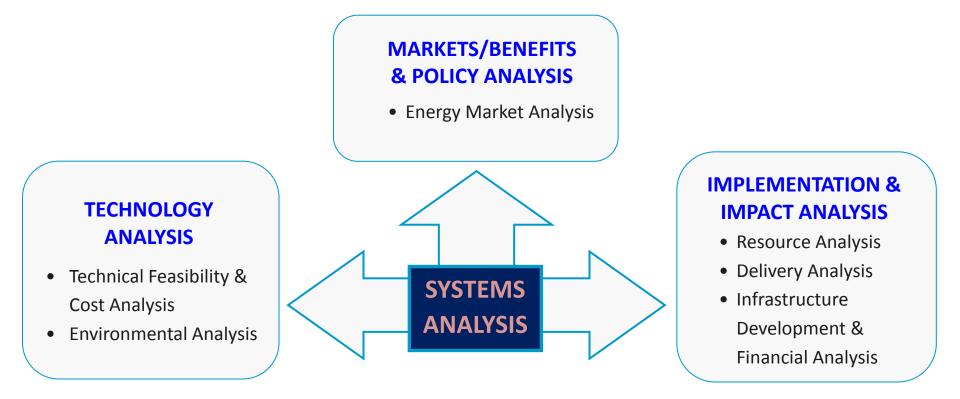
Data availability, accuracy, and consistency


- Analysis results depend on data sets and assumptions used
- Large number of stakeholders and breadth of technologies make it difficult to establish consistency

Coordination of Analytical Capability

 Analytical capabilities segmented by Program element, organizationally by DOE office, and by performers/analysts

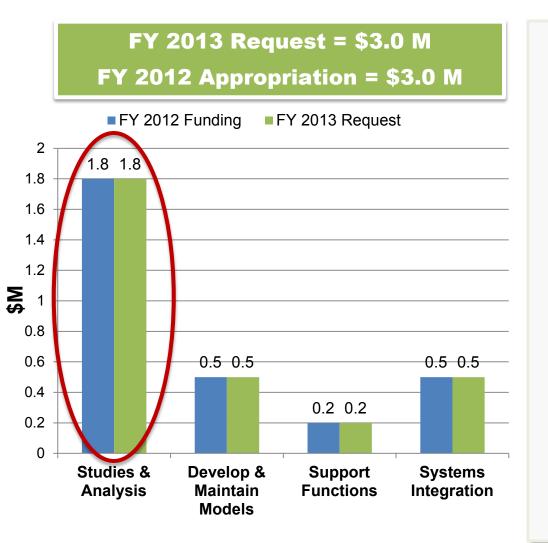
Partnerships with labs, industry, academia



4

Analysis Portfolio

A variety of methodologies are used in combination to provide a sound understanding of hydrogen and fuel cell systems and developing markets—and to quantify the benefits, impacts, and risks of different hydrogen and fuel cell systems.



Systems Analysis on the Web: www.hydrogen.energy.gov/systems analysis.html

Systems Analysis Budget

Determine technology gaps, environmental benefits, economic/jobs potential, and quantify technology advancement impacts

EMPHASIS

- Update models for program analysis, using cost performance and environmental information
- Assess market penetration, job creation, and opportunities for fuel cell applications in the near term
- Assess gaps and drivers for early market infrastructure cost for transportation and power generation application
- Assess business cases of biogas applications, infrastructure applications and integration in a domestic fueling network, and fuel cell combined heat and power (CHP) applications
- Assess synergies with other fuels and fueling systems
- Validate analysis with input from subject matter experts, industry and peer review process

Early Market Analysis: Integration of Natural Gas and Hydrogen

Natural Gas workshop with multiple stakeholders provided valuable insight for potential synergies with hydrogen.

Natural Gas Workshop

Objectives

- Identify Current status of natural gas and H₂ infrastructure
- Identify key challenges preventing or delaying widespread deployment of natural gas and hydrogen infrastructure
- Identify opportunities for addressing challenges and for government and industry stakeholders

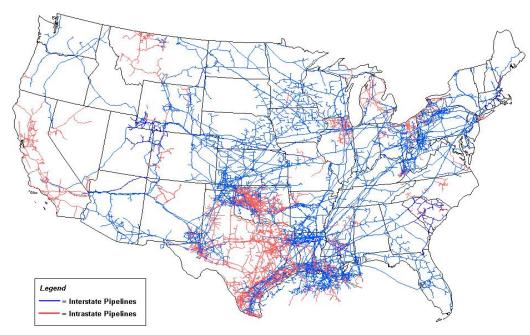
Results (preliminary)

- NG and H₂ have similar storage and regulatory concerns.
- Build clusters of refueling centers to support a critical mass of both types of vehicles.
- Develop NG and H₂ infrastructure along major commercial corridors.
- Develop consistent , long-term energy policies for NG and hydrogen fuel applications.
- Workshop summary report is available at: <u>www.transportation.anl.gov/pd</u> fs/AF/812.PDF

Next Steps:

- Develop low-cost, conformable lowerpressure (sorbentbased) on-board storage for NG and H₂
- Harmonize codes and regulations for permitting NG and H₂ infrastructure
- Involve business and community leaders in developing NG and H₂ infrastructure
- Involve investment community in financing options

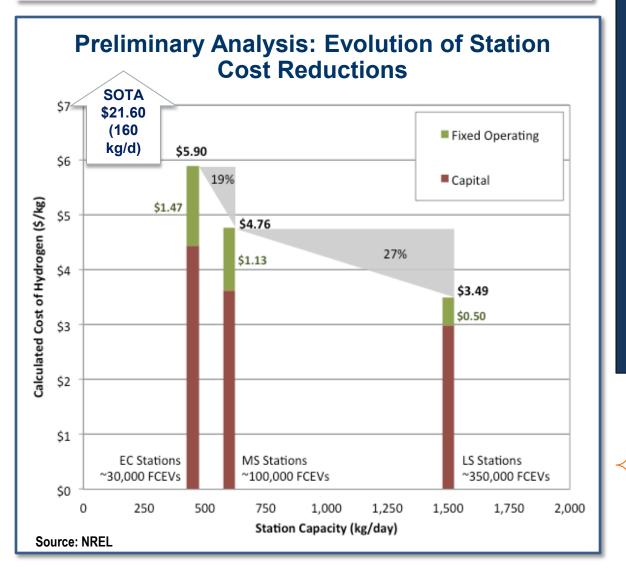
50 participants, including: natural gas and hydrogen producers; vehicle manufacturers; alternative vehicle agencies; fuel cell developers; national laboratories; academia; government agencies


Synergy Analysis: Natural Gas and Hydrogen

Natural gas infrastructure has the potential to provide storage and transport for injected hydrogen from remote generation sites to urban demand centers.

- NREL completed analysis of utilizing the natural gas infrastructure to transport injected hydrogen to demand centers. A report will be issued.
- NG network comprises >210 pipeline systems and spans >300,000 miles of transmission pipelines.
- Study determined hydrogen could be safely injected in concentrations of up to 20%.
- Adding renewable H₂ to NG improves air quality by reducing SOx, NOx, and particulate emissions.
- Injected H₂ could be extracted from the NG systems at a cost of \$0.3-1.3/kg of H₂.

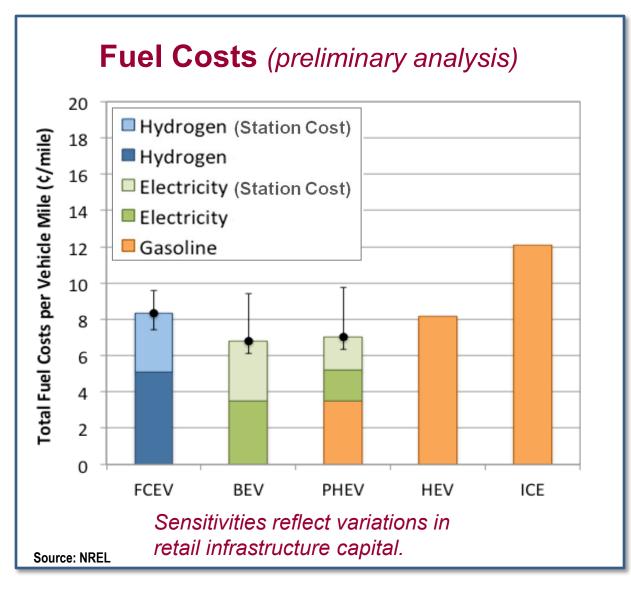
U.S. Natural Gas Pipeline Network, 2009


U.S. Natural Gas Pipeline Network, 2009

Source: Energy Information Administration, Office of Oil & Gas, Natural Gas Division, Gas Transportation Information System

Early Market Analysis: Station Cost Reduction

Stakeholders' input identified >80% reduction in hydrogen fueling station cost


- Preliminary results of Infrastructure analysis aggregated from 11 stakeholders' input
- Results show high current station costs can be reduced through
 - Economies of scale
 - Standardized station design
 - Multiple station installations
 - Continued R&D of manufacturing station components, compressors and hydrogen storage
 - Increasing the number of station installers and component suppliers
- NREL developed station cost calculator tool for analysis.

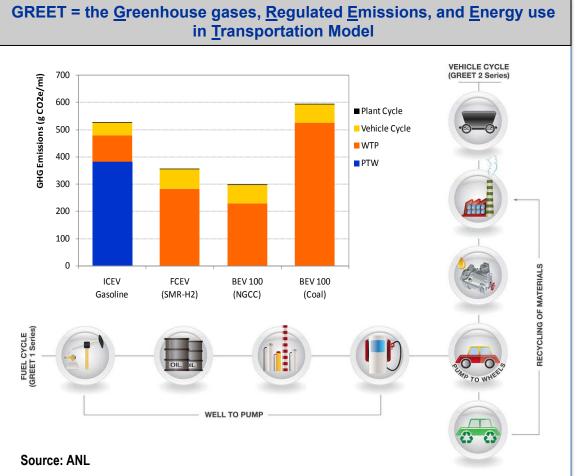
Station Description

SOTA: "State of the art" first-of-a-kind station at 100-200 kg/d
EC: "Early Commercial" station (200-600 kg/d)
MS: "More stations" sized at ~600 kg/d
LS: Larger stations (1,500-2,000 kg/d)

U.S. DEPARTMENT OF

NREL estimated infrastructure cost for various technologies.

Key Assumptions Used for 2025 Projection


- Cost of hydrogen delivered to the retail station: \$3.00/kg
- Cost of electricity:
 - \$0.11/kWh Resid. (Home)
 - \$0.095/kWh Comm.(Public)
 - AEO 2012 Early Release
- Cost of gasoline: \$4.02/gal (AEO)
- Fuel Economies
 - FCEV: 59 mpgge
 - BEV: 113 mpgge
 - PHEV: 141/45 mpgge (e/g)
 - HEV: 49 mpg
 - ICE: 33 mpg

Programmatic Analysis: Life-Cycle Analysis Updates

On a life-cycle basis, emissions from plant construction are negligible compared to fuel- and vehicle-cycle emissions.

GREET LCA Analysis = Fuel Cycle + Vehicle Cycle

- GREET LCA expands analysis of greenhouse gas and criteria emissions and petroleum/energy use to full life-cycle analysis for multiple pathways.
- Multi-Program analysis with consistent assumptions and transparent approach
- Gaps in LCA analysis care being assessed through the USDRIVE partnership (DOE, auto manufacturers, energy companies, and electric utilities).

Technology Analysis: Total Cost of Ownership for Future Light-Duty Vehicles

Multiple alternative-fuel vehicles are cost competitive on a life-cycle basis supporting a portfolio approach for advanced vehicle evolution.

- Joint analysis project with feedback from the Vehicle Technologies and Biomass Programs
- Industry responded to DOE Request for Information (RFI) for input to vehicle life cycle cost analysis on projected cost reduction rates for technologies that are not yet fully commercial

Common Assumptions

- 15-year ownership
- 10,000 miles per year
- 7% discount for annual fuel costs
- No resale value

Vehicle Types

Ref. SI: Current gasoline car Adv SI: 2025 gasoline car Adv CI: 2025 diesel car SI HEV: 2025 hybrid electric car SI PHEV10: 2025 gasol PHEV10 SI PHEV40: 2025 gasol PHEV40 FC HEV: 2025 fuel cell car BEV: battery electric car

Error Bars

<u>Green:</u> range of assumptions for fuel prices (EIA projections for fuels other than hydrogen; hydrogen range: \$2.50 - \$4.50 per kg) <u>Black:</u> range of assumptions for technology success.

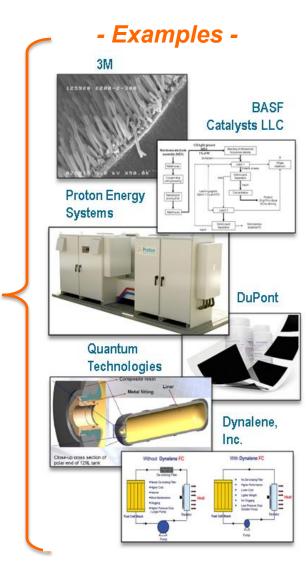
	FC HEV	BEVs
Battery Cost, \$/kWh		\$125, \$175, \$250
Battery Cost, \$/kW	\$22, \$27, \$40	
Fuel Cell Cost, \$/kW	\$27, \$31, \$43	
Fuel Cost in \$/gge (¢/kWh)	\$2.50, \$3.50, \$7.00	\$3.51 (10.5¢), \$3.68 (11¢)

Costs Based on15-Year Life (Societal Perspective)

Programmatic Analysis: Commercialization

ENERGY

Continued annual growth of >10% in the number of commercial products resulting from DOE Fuel Cell Technologies Program funding.

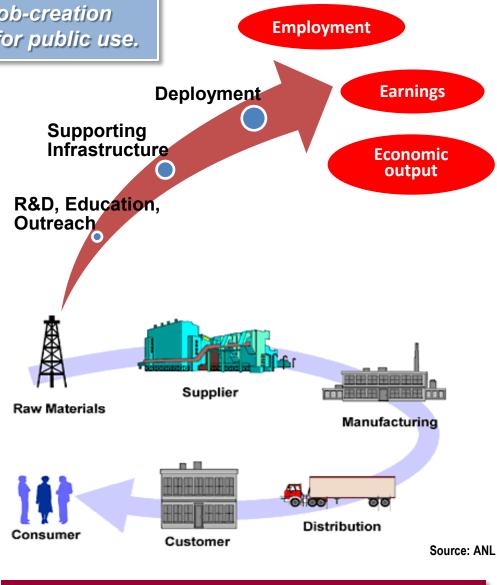

Accelerating Technology Innovation and Application

33 commercial products have resulted from EERE-funded Fuel Cell Technologies R&D

Patents

EERE-funded Fuel Cell Technologies resulted in >310 patents.

Cumulative Number of Commercial Technologies Developed with FCT-Program Funding 35 Storage 30 H₂ Production /Deliverv 25 20 ← Fuel Cells 15 10 5 Pre 2000 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012* 2000 * Partial data for 2012 Source: PNNL Commercial Pathways report to be published September 2012



Programmatic Analysis: Socio-Economic Benefits of Fuel Cell Industry Impact on Employment

Peer-reviewed employment model for job-creation potential for states and regions released for public use.

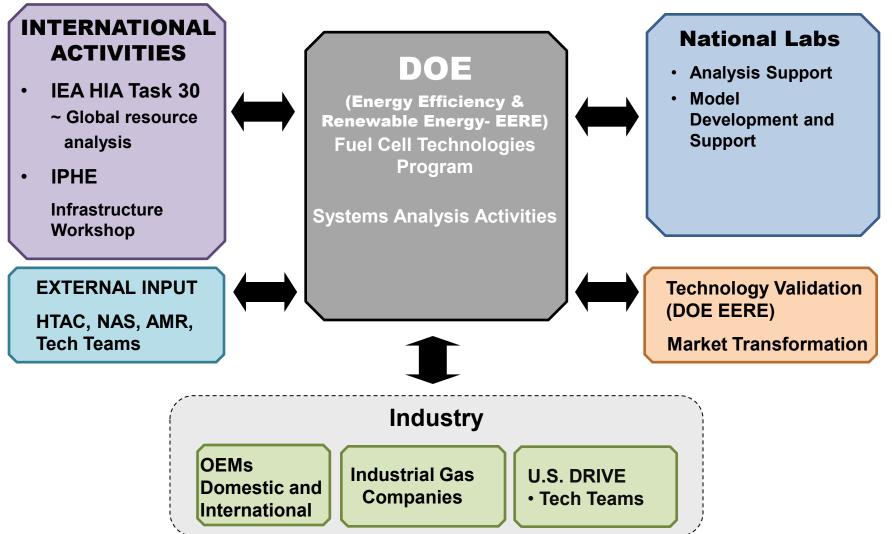
- ANL-RCF developed an employment and economic impact tool to estimate stationary FC industry impacts:
 - Production (PEMFC, PAFC and MCFC) in target applications
 - Installation of FCs and required infrastructure
 - O&M including fuel
 - Construction/expansion of manufacturing capacity
- Model was peer reviewed and beta tested prior to launch.
- State-, regional-, and national-level analyses including supply chain impacts
- Applications included forklifts, back-up power, specialty vehicles, etc.
- Jobs model will enable analysis of gross and net jobs, and revenues generated from fuel cell installation and investment.

Model now available from ANL website: JOBSFC.es.anl.gov

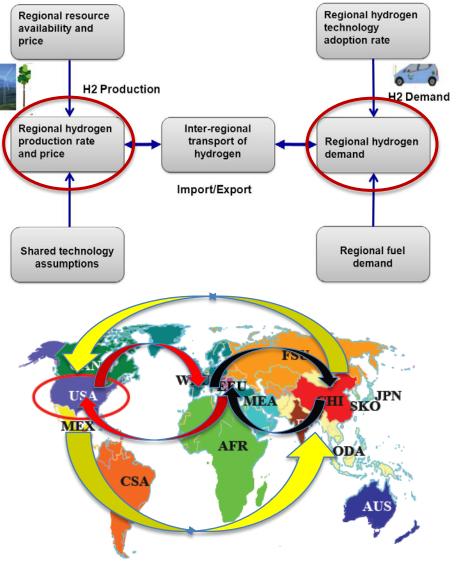
Key Systems Analysis Milestones & Future Plans

• Diverse portfolio and expanded capability of models developed by the Systems Analysis sub-program are enabling analysts to address barriers to technology development and commercialization.

U.S. DEPARTMENT OF


- Emphasis on early market and infrastructure analysis :
 - Focus on utilizing biogas as a resource for an alternative fuel.
 - Comprehensive approach to evaluate a portfolio of fuel cell applications for light duty transportation, stationary generation, backup power and material handling equipment, and the electric sector to realize economic, environmental and societal benefits.
- Plans continue to enhance existing models and expand analyses.

FY 2012	FY 2013	FY 2014	FY 2015	FY 2016-2020
Update well-to- wheels analysis and quantify reductions in petroleum use, greenhouse	eels analysis quantify uctions in roleum use, enhouseanalysis of job growth for MHEanalysis of resources/ feedstock, production/ delivery and	Provide analysis of Program milestones and technology readiness goals— including risk analysis, independent reviews, financial evaluations, and environmental analysis—to identify	Complete analysis of Program technology performance and cost status and potential to enable use of fuel cells for a portfolio of commercial applications	
gas emissions, and criteria pollutant emissions biogas resources for H ₂ production and stationary power generation	existing infrastructure for technology readiness		Complete analysis of H ₂ quality impact on H ₂ production cost and FC cost for long-range technologies and technology readiness	
Complete jobs model development	model analysis of job growth for	growth for distributed power	technology and risk mitigation strategies	Complete environmental analysis of impacts for H ₂ scenarios


Systems Analysis Collaborations

Analysis and peer review input coordinated among national and international organizations

U.S. DEPARTMENT OF

International Resource Flow

Objectives:

- Through collaboration with IEA analysts and IPHE, perform comprehensive technical and market analysis of
 - Hydrogen technologies and resources
 - Resource supply and demand related to projected hydrogen use
 - Global hydrogen infrastructure
 - GHG emissions and petroleum reduction
- Identify international flows of:
 - Energy
 - Hydrogen
 - Natural gas, LNG, coal
 - Platinum and other materials
- Enable informed decisions that lead to sustainable clean energy systems

Summary

Systems Analysis is an integral component of EERE and the Fuel Cell Technologies Program.

The Systems Analysis sub-program will

- Identify the synergies of hydrogen and fuel cells with other fuels and technologies to minimize barriers to market entry
- Confirm the technology advances needed to reduce infrastructure cost and show the similarity among costs for hydrogen fueling infrastructure and conventional or other alternative fueling infrastructure
- Assess impact of domestic and international growth in hydrogen demand on renewable resource availability and cost
- Show the socio-economic benefits of various fuel cell applications

Systems Analysis Team

Fred Joseck, Team Leader 202-586-7932 Fred.joseck@ee.doe.gov

Tien Nguyen 202-586-7387 tien.nguyen@ee.doe.gov

Joe Stanford 202-586-6757 Joseph.stanford@ee.doe.gov **Support:** Elvin Yuzugullu (SRA)

Kathleen O'Malley (SRA)