

From fundamental understanding to predicting new nanomaterials for high capacity hydrogen/methane storage and carbon capture

DOE-BES DE-FG02-08ER46522

Taner YILDIRIM^{1,2}

¹Department of Materials Science and Eng.,

University of Pennsylvania, Philadelphia, PA 19104

²NIST Center for Neutron Research, Gaithersburg, MD 20899

Program Manager: Dr. Thiyaga P. Thiyagarajan Neutron Scattering Office of Basic Energy Sciences U.S. Department of Energy Date: April 2, 2012 Project ID#: BES002

This presentation does not contain any proprietary, confidential, or otherwise restricted information

OUTLINE

 Graphene-Oxide-Frameworks (GOFs) for Hydrogen Storage and Carbon Capture

J. Burres,..., T. Yildirim, *Angewandte Chem. Int. Ed.* Vol. 49, 8902, 2010. G. Srinivas,...,T. Yildirim, *J. Mater. Chem.* Vol.21, 11323, 2011.

• GO-Derived Carbons (GODCs): Synthesis and Gas Adsorption Properties

G. Srinivas , J. Burres, T. Yildirim, Energy Environ. Sci., 2012, DOI: 10.1039/C2EE21100A

Can we store H₂ at room T with *van der Waals* Interaction???

• Yes, store H₂-rich molecule such as AB instead of H₂! *Nanoconfined AB in MOFs*...

G. Srinivas,...,T. Yildirim, *Chem. Eur. J. 2011; 17, 6043*.
G. Srinivas,...,T. Yildirim, *Int. J. Hyd. Ener.* DOI:10.1016/j.ijhydene.2011.04.008

J. Burres,..., T. Yildirim, *Angewandte Chem. Int. Ed.* Vol. 49, 8902, 2010.
 G. Srinivas,...,T. Yildirim, *J. Mater. Chem.* Vol.21, 11323, 2011.

G. Srinivas, J. Burres, and T. Yildirim, *Energy Environ. Sci.*, 2012, DOI: 10.1039/C2EE21100A

Graphine-Oxide Framework Materials (GOF)

A schematic view of boronic-ester (top) and GOF formation (bottom). Idealized graphene-oxide framework (GOF) materials proposed in this study are formed of layers of graphene oxide connected by benzene-diboronic acid "pillars".

Theoretical modeling and GCMC simulations on GOFs

Model systems of GOFs were built based on graphene oxide layers and rigid diboronic acid linkers. We label these structure by GOF-n where n is the number of GO carbon per linker. Various n=carbon:linker ratios (n= ∞ , 128, 64, 32, 16, and 8) were adopted and uniform linker distribution was assumed, leading to a series of structures with different pore size, pore volume and surface areas as shown below.

Theoretical modeling and GCMC simulations on GOFs

The GCMC simulations for ideal GOF-n structures with ngraphene carbons per linker. Similar calculations for H_2 uptake in MOF-5 gives 1.67 wt%, reasonably close to the experimental value ~1.3 wt%, giving confidence for the accuracy of GCMC simulations for GOF.

Graphene Oxide Framework Materials *Methanol solvothermal synthesis:*

We synthesized samples containing varying amounts of linker and characterized them with PXRD. As shown above, we observed a controllable, monotonic increase in the interlayer spacing in the GOF samples, from 0.75 nm to 1.05 nm.

<u>Graphene Oxide Framework Materials</u> Other non-boronic acid linkers???:

Other Linkers do not WORK, suggesting that boronic acid is the key for GOF!

Graphene Oxide Framework Materials Prompt Gamma Activation Analysis and XPS

(a) The major Figure boron peaks normalized to carbon peak in PGAA spectra, indicating the approximate relations **GO:Linker** between samples and the ideal GOF-n structures. (b) INS spectra of GO and GOF 1:1 sample and a model calculation based **GOF-32** on structure. (c) XPS O 1s and C 1s core level spectra for GO and three different GOFs.

Graphene Oxide Framework Materials BET Surface Area

Nitrogen sorption isotherms of GO precursor with a BET specific surface area (SSA) of 16 m²/g and GOFs which have BET SSA's of 74 m²/g, 138 m²/g, 280 m²/g, 470 m²/g and 275 m²/g for the initial GO to linker weight ratios of 1:0.1, 1:0.25, 1:0.5, 1:1, and 1:2, respectively.

Given that the GO alone has almost no usable surface area (< $20 \text{ m}^2/\text{g}$), there is essentially no H_2 adsorption, however, it is clear that the addition of the diboronic acid linker progressively increases the accessible surface area and thereby increases the H_2 uptake. Eventually, increased linker concentrations reduce the accessible surface area due to the filling up of the inter-layer space, which also reduces the H_2 uptake. The BET of nearly 500 m²/g obtained for the 1:1 initial mass loading is considerably higher from the graphene oxide sheets.

Graphene Oxide Framework Materials *Hydrogen and CO*₂ *Uptake*

Excess H_2 and CO_2 isotherms at various temperatures, indicating GOF exhibits a considerably large isosteric heat of adsorption for both H_2 and CO_2 , as compared to other nanoporous materials.

Graphene Oxide Framework Materials *Conclusions:*

1.We have successfully shown that graphene oxide layers can be used as building blocks for new nanoporous materials by interlinking them with diboronic acids.

2.Considering the rich boron chemistry and large number of different types of boronic acids, it is quite possible that there are other linkers that will perform better than B14DBA used in this study.

3.Furthermore, different activation procedures other than heat treatment could improve the adsorption capacity of GOFs. In particular, chemical reduction to remove unreacted functional groups could improve the pore size and surface area significantly.

We are currently carrying out more detailed research along these lines. We hope that our theoretical predictions and the first experimental results reported here will start a new research direction based on cheap and environmentally friendly GO as a building block for new nanoporous materials with better gas adsorption properties.

Graphene oxide derived carbons (GODCs): synthesis and gas adsorption properties

G. Srinivas, J. Burres, and T. Yildirim, Ener. and Environ. Sci., Feb. 2012, DOI: 10.1039/c2ee21100a

Synthesis of GODCs...

pGOGC6-800 → Pristine GO, with 1:6 ratio of C:KOH and 800 C activation

exfGOGC4-900 → Thermal. exfoliated GO, with 1:4 ratio of C:KOH and 900 C

GODCs: Surface Area (1000-1900 m²/g)

N₂ adsorption–desorption isotherms of GO, rGO, exf-GO and GODCs produced under different activation conditions, measured at 77 K. The solid and open data points represent adsorption and desorption isotherms respectively.

GODCs: Pore Size Distribution...

Pore size distribution of exf-GO and GODCs produced under different activation conditions. The data are derived from the N_2 adsorption isotherms...

GODCs: Hydrogen Absorption Properties

GODCs: Hydrogen Absorption Properties

BET vs H_2 uptake (at 77 K) of pillared GOs (GOFs) and different types of GODCs. The solid represents the generalized behavior for range of porous carbons.

GODCs: Hydrogen Absorption Properties

Q_{st} vs H₂ uptake (at 77 K) of pillared GO (GOF) and different types of GODCs.

GODCs: CO₂ Absorption Properties

The low pressure (1 bar) and high pressure (20 bar) CO_2 adsorption capacities at 300 K with respect to the BET surface area (a), total pore volume (b) and average pore size (c). Around room temperature (298–300 K) the CO_2 adsorption capacities at 20 bar of our GODCs and a range of other porous carbons are compared with respect to the most important porosity parameter, BET surface area, that defines the adsorption capacities of most of the porous

GODCs: CH₄ Absorption Properties

The low pressure (1 bar) and high pressure (35 bar) methane adsorption capacities at 300 K with respect to the BET surface area (a), total pore volume (b) and average pore size (c). Around room temperature (298–300 K) the methane adsorption capacities at 35 bar of our GODCs and a range of other porous carbons are compared with respect to the BET surface area (a) (ref. 35). "+" represents the commercial activated carbons.

GODCs versus MOFs/COFs...

The room temperature (298–300 K) and high pressure CO_2 (a) and methane (b) adsorption capacities at 20 bar and 35 bar, respectively, of our GODCs and a range of other porous organic frameworks compared with respect to the BET surface area.

GODCs: CONCLUSIONS..

□We report the synthesis of a range of high surface area graphene oxide derived carbons (GODCs) and their applications toward carbon capture and methane storage.

 \Box We obtain largely increased surface areas up to nearly 1900 m²/g for GODC samples from 10 m²/g of precursor graphene oxide (GO).

□Our GODCs reveal favourable gas adsorption capacities compared to other high surface area carbons.

□We show that producing high surface area carbons from GO precursor is a viable method, and the porosity parameters are easily tunable for their potential gas adsorption applications.

What about room temperature hydrogen storage?

- Can we store hydrogen at room temperature in a van-der Waals host-material???
- We think YES:
- The key is not to try to store hydrogen molecule but rather hydrogen-rich molecules in nanoporous materials!
- Ammonia-Borane (AB) is such a promising hydrogen rich molecule!!!!

Ammonia Borane (NH3BH3, AB)

12

TPD

<u>्रि</u>10

±[∾] 2

40 60

- Light weight, stable in the solid state at ambient temperatures
- , desorbed (wt.% High capacity 19.6 wt.% H₂ (1/3 at ~120°C, 2/3 at ~200°C & complete at >1000°C)

Practical application:

≻very slow H₂ release <100°C</p> >poisonous byproducts → ammonia, borazine, diborane ≻sample foaming ≻irreversibility

Metal-catalyst & porous support:

 \checkmark greater extents of H₂ release rate ✓much lowered temperatures preventing byproducts controllability in dehydrogenation total system weight reversibility

MOF-74

Pore structure and AB confinement

As synthesized

-H2C

Hexagonal one-dimensional ~12 Å pore channels

Unsaturated Mg-metal centers at edges of the pores

Stable pore structure

Easy loading of 1:1 mole ratio of AB/Mg (~26 wt% of AB loading in MOF)

AB incorporated

AB confinement & pore filling

AB impregnation within the MOF pores

Activated MOF-74:

> open pores with BET surface area of ~1000 m²/g
AB loaded MOF :

no open pore, no open metal-sites & BET surface area of ~4 m²/g

Dehydrogenation

Volumetric thermal desorption

Dehydrogenation temperature reduced down to ~65 °C compared to >100 °C of bulk AB

Heating rate of 2 °C/min

Heavy loading behaves like pristine AB

Dehydrogenation

Isothermal dehydrogenation kinetics

In conclusion, confining AB in one-dimensional nanopores of MgMOF74 improves the hydrogen release kinetics significantly. What about the byproducts? Do we still get diborane, ammonia, borazine, etc???

Dehydrogenation

Mass spectroscopy

Heating rate of 2 °C/min

Powder X-ray diffraction

AB impregnation and structural stability of the MOF

MOF-74 retains its framework structure

≻upon AB loading

➤after thermal dehydrogenation

Conclusion and out look

Our system demonstrates

- Highly enhanced kinetics at markedly reduced temperatures compared to the pristine AB
- Complete suppression of all the byproducts; Ammonia, borazine and diborane
- ✓ Offers controllable and efficient way of clean hydrogen generation
- ✓ For total system, include AB and MOF, H₂ delivery is ~3 wt.% (1:1 AB/Mg) and up to 6 wt.% for 2:1 AB/Mg, if we tolerate with release of little amount of byproducts
- Given the flexibility to design MOFs with varying pore sizes from required metal centers as well as organic ligand, it is possible that the efficiency in desorbed hydrogen increased.
- Our findings open new directions to optimize the conditions for clean and efficient way of hydrogen desorption from ammonia borane that can be suitable for operation conditions of polymer electrolyte fuel cells.

THANKS

