Novel theoretical and experimental approaches for understanding and optimizing hydrogen-sorbent interactions in metal organic framework materials

> PI: Yves Chabal Presenter: Timo Thonhauser University of Texas – Dallas 05/16/2012

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project ID: BES003

Our Research Team

Y. Chabal Characterization

Our Research Team

Y. Chabal Characterization

T. Thonhauser Theory WAKE FOREST

Metal Organic Framework Materials

- MOFs have porous crystalline structures that can be tailored
- Zn₄O(CO₂)₆ corners connected
 by phenylene linkers
- High surface areas, e.g.
 MOF-210 BET SA 6240 m²/g
- Fast adsorption/desorption kinetics through channels
- Building blocks can be changed

Metal Organic Framework Materials

- MOFs have porous crystalline structures that can be tailored
- Zn₄O(CO₂)₆ corners connected
 by phenylene linkers
- High surface areas, e.g.
 MOF-210 BET SA 6240 m²/g
- Fast adsorption/desorption kinetics through channels
- Building blocks can be changed

MOF Applications

Hydrogen Storage in MOFs

Hydrogen Storage in MOFs

Advantages

Physisorption (little heat) Stores molecular hydrogen (Fairly) easy to synthesize Inexpensive Uses only industrial metals Fast adsorption/desorption Can be easily tailored

Disadvantages

Physisorption (low temp.) Low binding energy MOF-210: Gravimetric adsorption of H₂ 176 mg/g

adsorption of H₂ 176 mg/g at 77K

w. L. mao et al., Phys. Today 60, 42 (2007)

Approach

To design new MOFs, we need to understand the H_2 / MOF interaction

- Where does it bind?
- How strong does it bind?
- How much can bind?
- What are the barriers?
- High-pressure and low-temp IR
- Raman
- Adsorption isotherms
- Isosteric heat
- First-principles DFT (vdW-DF)

Approach

First-principles DFT (vdW-DF)

Experiments

H. Liu et al., Adv. Funct. Mater. 21, 4754 (2011)

Isotherm measurements: information about H₂ uptake

Average effects: no specific guest-host interaction

Need to understand effects at the molecular level: Spectroscopy

Induced IR activity because of an interaction induced-dipole moment between H₂ and the framework atoms

Shift of H_2 vibrational modes from the free H_2 (para at 4161cm⁻¹ and ortho at 4155 cm⁻¹) upon adsorption

Nijem et al., JACS 132, 1654 (2010)

$Zn(bdc)(ted)_{0.5}$

1,4-benzene-dicarboxylic acid (BDC)

triethylenediamine (TED)

Y. G. Zhao et al., Chem. Eur. J. 17, 5101 (2011)

 $Zn(bdc)(ted)_{0.5}$

Y. G. Zhao et al., Chem. Eur. J. 17, 5101 (2011)

$Zn(bdc)(ted)_{0.5}$

Y. G. Zhao et al., Chem. Eur. J. 17, 5101 (2011)

$Zn(bdc)(ted)_{0.5}$

$Zn(bdc)(ted)_{0.5}$

H₂ Uptake at 77K and Qst

J. Y. Lee, J. Li, et. al. manuscript in preparation.

Zn(bdc-OH)(ted)_{0.5}

H₂ Uptake at High Pressure

J. Y. Lee, J. Li, et. al. manuscript in preparation.

H₂ Adsorption in MOF-74-Mg

8-13 kJ/mol H₂ binding energy; ~10 Å 1D channels; aromatic ligand; M-H₂ range (~2.1-2.8 Å) depending on the metal (M=Zn, Mg, Ni)

Neutron diffraction at 4K (D₂) Y. Liu et al., Langmuir **24**, 4772 (2008) Close distance between metal and oxygen site ~2.9 Å: H_2 - H_2 interactions possible!

H₂ Adsorption in MOF-74-Mg

Uptake ~1 wt% Isolated H₂ at the metal site Lower H₂ shifts than $Zn(bdc)(ted)_{0.5}$ Higher H₂ loading \rightarrow larger IR shift change in Δv = -39 cm⁻¹

Nijem et al., JACS 132, 14834 (2010)

H₂ Adsorption in MOF-74-Mg

RT: $\Delta v(H_2) = -32 \text{ cm}^{-1}$

Nijem et al., JACS 132, 14834 (2010)

Decrease in dipole moment H_2^M due to H_2 - H_2 interactions + activation energy to form the H_2 - H_2 dimer

vdW-DF IR shifts for different loadings for MOF-74-Mg (in cm⁻¹)

	$\Delta v(H_2) Mg$	∆v(H₂) O
1H ₂ /unit cell	-51	NA
12H ₂ /unit cell	-67	-41
H_2 "pairing" interaction		

vdW-DF dipole moment of H₂

	Mg	0
$1H_2$ /unit cell	4.1	NA
12H ₂ /unit cell	3	4.8

H₂-H₂ Interactions in MOF-74-Mg

Nijem et al., JACS **132**, 14834 (2010)

Accurately Calculating IR Intensities

0 X

0.1^{-0.1}

Stretch frequency shift of adsorbed H₂

Site	Theory (cm ⁻¹)	Expt. (cm^{-1})	Calculated E_B (kJ/mol)		
cup	-23	-27.5	-11.1		
02	-22	-19.0	-7.9		
O3	-13	-17	-7.8		
benzene	-15	_	-5.4		

Theory vs experiment for RV transitions

	m_i		The	ory	Experiment	
		$m_i m_f$	Δv	Int.	Δv	Int.
Q(0)	0	0	-23	2		abs
<i>Q</i> (1)	$\stackrel{\pm 1}{0}$	$\stackrel{\pm 1}{0}$	-23	97	-27.5	str
$Q^{*}(1)$	± 1	0	22	9	39	wk
S(0)	0	± 2	-44	58	-49.3	str
		± 1	-12	5	-6.8	wk
		0	-1	2		abs
S(1)	± 1	± 3	-34	100	-36.8	str
		± 2	-9	6	-0.8	wk
		± 1	6	9	21.6	wk
		0	11	3		abs
	0	± 3	-78	0		abs
		± 2	-53	3	-61	wk
		± 1	-50	~ 0		abs
		0	-33	~ 0		abs

L. Kong, Y. J. Chabal, and D. C. Langreth, Phys. Rev. B 83, 121402 (2011)

0.1

0 Y

$(H_2)_4 CH_4$ in MOFs and CNT

W. L. Mao et al., Physics Today 60, 42 (2007)

$(H_2)_4 CH_4$ in MOFs and CNT

W. L. Mao et al., Physics Today **60**, 42 (2007)

$(H_2)_4 CH_4$ in MOFs and CNT

0.35	System	Free	Fixed	Filling	$ ho_{ m mas}^{ m w}$	$ ho_{ m ss}^{ m w/o} ho_{ m mass}^{ m w/o}$	Max. P	T
0.30 / j	MOF-5	11.2	18.6	$2 \times 2 \times 2$	10.0) 6.7	3.9	224
	irMOF-10 irMOF-16	15.4 19.1	$\begin{array}{c} 24.5 \\ 28.8 \end{array}$	$3 \times 3 \times 3$ $3 \times 3 \times 3$	$19.5 \\ 15.3$	$5 13.0 \\ 10.2$	2.3 1.5	$172 \\ 126$
0.25	Pure H4M	<u> </u>		_	50.2	2 33.3		10
$6_{0.20}$ aransition- 1_{el}	ement	/	/				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
bydrides hy	drides	/						
Pj 0.15		Hyd	rocarbon	S				
0.10-	System	Radius	Fill	ing ρ	mass	$ ho_{ m mass}^{ m w/o}$	$ \rho_{\rm vol} = E_r $	ε
	(10,0)	3.95	1×1	× 1	2.4	1.6 0	0.028 870	0.7
	(16,0) (24,0)	$\begin{array}{c} 6.30\\ 9.43\end{array}$	2×2 3×3	2×1	5.6 7.9	3.7 (5.3)	$\begin{array}{cccc} 0.055 & 555 \\ 0.065 & 373 \end{array}$	$\begin{array}{c} 1.0\\ 1.6\end{array}$
6.03 1.541	(32,0)	12.56	4×4	$\times 1$	10.0	6.7 0	0.070 280	2.1
1 0	(40,0)	15.69	$5 \times 5 \times$	1+8	14.6	9.7 0	0.097 224	2.6
HYDRO	(48,0) (56,0)	$\frac{18.82}{21.96}$	$6 \times 6 \times 7 \times $	1 + 12 1 + 16	16.7 18 4	11.1 (1.102 187 160 160 160 160 160 160 160 160	3.1
- 03 0 0	(64,0)	25.08	$8 \times 8 \times$	1 + 24	20.4	13.6 0	100 100 140 140	4.1
W. L. Mao et al	H4M				50.2	33.3 ().160 —	

Q. Li and T. Thonhauser, J. Phys.: Condens. Matter, in press (2012)

Computational Improvements

Improved description of van der Waals interactions within DFT through a better exchange-correlation functional: vdW-DF → vdW-DF2

Computational Improvements

We implemented vdW-DF and vdW-DF2 in the computer code PWscf (part of the open-source QUANTUM-ESPRESSO package), which shows a speed up of approximately a factor of 2 - 3, compared to our original implementation in ABINIT.

H₂ in SII clathrate: 408 atoms/unit cell

We have also derived a formalism that allows us to calculate the vdW-DF stress tensor, allowing for a much more efficient structural optimization.

Future Directions

Spin-polarized calculations are not yet possible and interesting cases such as MOF containing Fe, Co, Ni are excluded. Future: spin-polarized vdW-DF.

Dynamical and temperature effects are excluded at the moment. Future: implement vdW-DF in molecular dynamics code.

Framework is in place for adsorption of a variety of small molecules (CO, CO₂, N₂, H₂O, CH₄, ...). Future: apply Framework to study co-adsorption and gas separation.

Conclusions

A combination of vdW-DF calculations and spectroscopic data gives a mechanistic understanding of molecular adsorption in MOFs.

Knowledge of this interaction is important to design and test MOF structures with desired functionality.

Tools and methodology are in place to address more complex systems, such as co-adsorption of several gases and gas separation.

Project ID: BES003 Entirely funded by DOE BES Grant No. DE-FG02-08ER46491

