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Objectives 
Original Objectives 
Investigate the formation, decomposition, and mechanism of hydrogen interaction 
with a novel class of carbon nanostructures and complex hydrides 

Studying these systems is useful to understand the formation of novel carbon- metal 
nano structures and helps to understand the effect of confinement in carbon scaffold  

Theoretical and experimental investigation of a variety of carbon nanostructures 
(CNT, MWCNT, fullerenes, etc.) as well as complex metal hydrides (NaAlH4, LiBH4, 
LiAlH4, etc.) for hydrogen storage 

The work, however,  led to Identifying new composite materials with  
New Objectives:  
Determine how they interact reversibly with hydrogen, physical and 
chemical properties, determine microcrystalline structure and 
mechanisms 
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• composites made out of C60 and hydrides 
  - Li-C60-H, LiBH4-C60, LiAlH4-C60, Na-C60-H, NaAlH4-C60 
          
 

 Carbon Nanostructure 

Complex Metal Hydride 

Intercalated  
Material 

- H2 

+ H2 

(desorption) 

(absorption) 

Experimental Design: 

mixing 

Intercalation 
(B.M.-free) (hydrogenated) (dehydrogenated) 

Intercalated  
Material 

Hydrogen capacity?  
Reversibility? 
Mechanism? 

Advances in Materials Development 
for Hydrogen Storage 
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Fundamental Studies on Hydrogen Interaction with Carbon 
Nanostructures led to the identification of novel materials based on 
carbon nanostructures 

NaAlH4 and Carbon Nanostructures

Sodium Aluminum Hydride (NaAlH4)

Step 1:  3 NaAlH4 → 3Na3AlH6 +2Al + 3H2 [3.7 wt%]
Step 2:  2Na3AlH6 → 6NaH + 2Al +3H2            [1.8 wt%]

Berseth, P. A.; Harter, A. G.; Zidan, R.; Blomqvist, A.; Araujo,
C. M.; Scheicher, R. H.; Ahuja, R.; Jena, P. Nano Letters
2009, 9, 1501

Increase in electron affinity decreases
the H-removal energy (inductive effect)

 Nanocomposites of NaAlH4 with various 
carbon sources (graphite, CNT, and C60) 
were synthesized by a ball-mill free
procedure

 Cycling experiments of the composites 
(abs/des) showed that C60 was superior 
to other carbon sources tested

 C60 also lowered the desorption 
temperature of NaAlH4 to ~130°C (from 
~180°C, uncatalyzed)

Theoretical ResultsExperimental Results

Background 

LiBH4-C60 Nanocomposite

Lithium Borohydride (LiBH4)

2LiBH4 → 2LiH  + 2B + 3H2 [13.8 wt%]

(A) T ramp (2°C/min); LiBH4:C60 (1.6 mol%); (B) 1st desorption;

(C) 2nd desorption; (D) 3rd Desorption; (E) LiBH4 standard

 Reversible hydrogen storage has been 
demonstrated by ball-milling LiBH4 with MgH2
and TiCl3
 Reversible hydrogen storage has also been 
observed for LiBH4 with nanoporous carbon 
scaffolds, activated carbon, and SWNT’s

            
              

                 
                

          

Nanocomposites of LiBH4 with 
C60 demonstrates increased 
desorption kinetics and reversible 
rehydriding (4.2 wt% H2)
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Vajo, J.; Skeith, S.; Mertens, F. J. Phys. Chem. B, 2005, 109, 3719
Gross, A.; Vajo, J; Atta, S.; Olson, G. 2008, J. Phys Chem. C. 112, 5651
Fang, Z-Z; Wang, P.; Rufford, T.; Kang X-D.; Lu G-Q.; Cheng H-M. 2008, Acta Mater, 56, 6257 
Wang, P-J.; Fang Z-Z.; Ma L-P.; Kang, X-D; Wang P. Int. J Hydrog. Energy. 2008, 33, 5611
Wellons, M. S.; Berseth, P. A.; Zidan, R. Nanotechnology 2009, 20. 

   
  

    
   XRD confirms the reversible formation 

of LiBH4 in the nanocomposite over 
multiple cycles 
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Variable Temperature NMR (LiBH4-C60) 

Shane D. T., Corey R. L., Rayhe L. H.  Wellons M,  Teprovich J. A,  Zidan R., Hwang S.J., Bowman R. C., and Conradi M. S.,  J. 
Phys. Chem. C 2010, 114, 19862–19866 
 

 Heating LiBH4-C60 increases the fraction of mobile hydrogen (as BH4
-) as well as lithium ions in the 

nanocomposite material 
 After heating, 1H spectra is similar to a LiBH4 impregnated aerogel that was reported by Conradi et al. 

 The fraction of mobile BH4
- at 22°C in the LiBH4-C60 material (36%) is approximately double the 

amount of mobile BH4
-
 in a previously reported LiBH4-C60 material 

Effect of C60 on Hydrogen Mobility in LiBH4 

In Collaboration with Prof. Mark S. Conradi,  Washington Univ. in St. Louis 
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Variable Temperature NMR (LiBH4-C60) 

Shane D. T., Corey R. L., Rayhe L. H.  Wellons M,  Teprovich J. A,  Zidan R., Hwang S.J., Bowman R. C., and Conradi 
M. S.,  J. Phys. Chem. C 2010, 114, 19862–19866 
 

Effect of C60 on Lithium Mobility in LiBH4 

In Collaboration with Prof. Mark S. Conradi,  Washington Univ. in St. Louis 
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LiAlH4-C60 

 Aluminum is a spectator metal in this material 

 The two peaks at 2848 and 2911 cm-1 indicate 
the formation of C-H bonds.  This suggests the 
formation of a hydrogenated fullerene (fullerane).  
Suggests active storage material is Lix-C60-Hy. 

Lithium Aluminum Hydride (LiAlH4) 
Step 1:  3LiAlH4 → Li3AlH6  + 2Al + 3H2   [5.3 wt%] 
Step 2:  Li3AlH6 → 3LiH  + Al + 3/2H2       [7.9 wt% total] 
Step 3:  LiH  →  Li + 1/2H2           [10.5 wt% total] 

Rehydrogenation at 350
 

C and 100 bar H2 for 11 hours 
LiAlH4 standard (black) , 2nd desorption (blue), 
LiAlH4:C60 (60:1)- 1st desorption (red), 2nd (green),  
3rd (orange). 

Teprovich, Jr., J.A.; Knight D.A.; Wellons, M.S.; Zidan, R.  J. Alloys 
Compd., 2011, 509S, S562-S566. 

Step 1 

Step 2 

Step 3 

Characterization of a NaAlH4-C60 material also 
demonstrated the same type of behavior.  These 
studies suggest that metal hydrides (i.e. LiH and 
NaH) can be used to synthesize intercalated 
fulleranes that are capable of reversibly storing 
hydrogen as Mx-C60-Hy. 
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Optimization and the Formation of New materials 
Case of Li6-C60-H40 
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Optimization of the C60:Li ratio for hydrogen storage.  Samples 
were hydrogenated under 105 bar H2 at 250 °C for 11 hr 
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TGA-RGA comparison of our Li6-C60-H40 nanocomposite (as prepared and 
rehydrogenated) with a pure hydrofullerene.  Our material is higher in 
capacity and releases only pure H2 and no methane like the hydrofullerene. 
The samples were rehydrogenated under 105 bar H2 at 350 °C for 11 hr 

Nano Letters, 2012, 12, 582-589. 
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Effect of T and P on the H2 Capacity  
of the 6:1 Ratio 
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* S. M. Luzan, Y. O. Tsybin, and A. V. Talyzin  J. Phys. Chem. C, 
2011, 115, 11484–11492 

C60Hx at 400 over days* 
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Activation Energy (Kissinger Plot) 
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Reduction in the activation energy for the onset of H2 desorption is 
lowered by 26.9 kJ/mol upon the intercalation of lithium.  



12                                                                                                                                                                                                                                                                                                                                                                                                                                    

IR and Raman (Where is the Hydrogen?) 
Red- Dehydrogenated (x3), Blue- Rehydrogenated (x3, 350°
 

C), Black- as prepared 

 

•  Formation of C-H bonds is confirmed by the presence of 
the 3 peaks that form between 2800-3000 cm-1. 
•  The C=C stretching vibration (1428 cm-1) is shifted to 
~1344 cm-1 and is sensitive to the degree of charge 
transfer  to the C60 as well as to polymerization. (i.e. K6C60 
– 1341 cm-1 and photopolymerized C60 - 1324 cm-1) 
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•  Upon dehydrogenation there is a shift of the Ag 
mode from1468 to 1433 cm-1 and is consistent with a 
6 electron transfer to C60 (6 cm-1 per e-) 
•  The appearance of broad bands at ~1335 and 
~1585 cm-1 is consistent with polymerization and/or 
cage modification 
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XRD Depicting Phase Transformation  
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**A phase reversible phase transition from fcc to bcc occurs depending on the temperature at which 
the hydrogenation is performed.  This typically will not happen until the C60 is exposed to extremely 
high pressures (~3 GPa)** 

a 

J.A. Teprovich Jr., M. Wellons, R. Lascola, S. Hwang, P. Ward, R. Compton,  R. Zidan. Nano Letters, 2012, 12, 582-589 
 

V.E. Antonova , I.O. Bashkina, S.S. Khasanova, A.P. Moravskyb, Yu.G. Morozovc, Yu.M. Shulgab,Yu.A. Ossipyan , E.G. Ponyatovsky, Journal of Alloys and Compounds 
330–332 (2002) 365–368 
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Solid-State NMR 

Red- Dehydrogenated (x3) 
Blue- Rehydrogenated (x3, 350
 

C) 
Green- Rehydrogenated (x3, 250
 

C) 
Black- as prepared 

After the rehydrogenation, the sp3 carbons now grew 
significantly and reach to about 50% for the sample 
rehydrogenated at 350 ºC, meaning 38 out of 60 
carbons are in the sp3 side due to the hydrogenation. 
Interestingly, peaks for both sp2 and sp3 for the sample 
rehydrogenated at 250 °C look broader and ill defined, 
indicating that the sample hydrogenated at 250 °C could 
be in the process of transitioning from fcc to bcc.  

The CPMAS of 6Li also shows that hydrogen is closely 
associated with lithium in order to get a signal in the CP 

In Collaboration with Dr. Son-Jong Hwang, California Institute of Technology 
  

Cross-polarization (CP) [Waugh et al.] can be 
used to enhance the signal of nuclei with a low 
gyromagnetic ratio by magnetization transfer from 
nuclei with a high  gyromagnetic ratio (e.g. 1H), 
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Solid-State NMR 
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7Li MAS NMR

  

  

Unusual far upfield shift at -9.1 and -11.5 ppm in the 7Li MAS NMR spectra of the 
rehydrogenated samples, and indicates that a highly shielded Li species is formed 
during the rehydrogenation process.  This was previously observed in a Li@C60 and 
a Li-corannulene structure *,**. 

* Zabula, A. V.; Filatov, A. S.; Spisak, S. N.; Rogachev, A. Y.; Petrukhina, M. A. Science, 2011, 333, 1008−1011 
 

** Aoyagi, S.; Nishibori, E.; Sawa, H.; Sugimoto, K.; Takata, M.; Miyata, Y.; Kitaura, R.; Shinohara, H.; Okada, H.; Sakai, T.; Ono, Y.; 
Kawachi, K.; Yokoo, K.; Ono, S.; Omote, K.; Kasama, Y.; Ishikawa, S.;Komuro, T.; Tobita, H. Nat. Chem. 2010, 2, 678−683 
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Powder X-ray diffraction data of the Na6C60 material a) as it is first formed, b) after hydrogen 
absorption, and c) after hydrogen desorption. Note that the appearance of peaks unique to the 
absorbed material (marked with a #) and the disappearance and re-apearance of the peaks unique to 
the desorbed material (marked with a *) demonstrate that materials sorption reversibility 

Cycling the Na6-C60 Material 
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Cycling the Na6-C60 Material 

SRNL-TR-2011-00103 

The Material Retains Its Reversible Capacity Over Several 
Cycles (it even improves as it is cycled) 
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Ongoing Work – Anelastic Spectroscopy 

In Collaboration with Prof. Rosario Cantelli,  Sapienza University of Rome 

Anelastic spectroscopy measures the elastic energy loss and dynamic modulus in high 
vacuum in the temperature range between 1.3 and 900 K.  

• This technique can be used to quantitatively determine the dynamics and the 
diffusion parameters of mobile species in solids and the occurrence of phase 
transitions. 
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Initial experiments on our as prepared materials suggest that the metal hydride (NaH, 
LiH) is well distributed in the material, which is attributed to our solvent-assisted 
mixing procedure. 
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Summary and Future Direction 

 Simple method was developed to synthesis this unique class of 
materials 

 The Mx-C60-Hy material are unique systems capable of reversible 
hydrogen storage at much milder conditions than C60-Hy 

 The materials are also unique in that it can store multiple hydrogen 
atoms per equivalent of M 

 Optimum ratio of metal to C60 in the case of Li was identified 
 Structure and phase transition due to hydrogen loading has been 

identified of C60 doped systems 
 Future investigations include: Raman spectroscopy , 

Hydrogen/Deuterium Cycling and in-situ Neutron measurements and 
Solid-State NMR, Anelastic spectroscopy and Atomistic modeling 

 Atomic scale imaging of the material, utilizing the scanning probe 
microscopy facility at the Center for Nanoscale Materials (CNM)  
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EXTRA SLIDES 
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Comparison of Li6-C60-H40 and 
Hydrofullerane 
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Cross-Polarization MAS NMR of Li-C60-Hx (6:1)  

Absent 6Li peak within desorbed sample indicative of Li/H separation  
 

Cross-polarization (CP) [Waugh et 
al.] can be used to enhance the 
signal of nuclei with a low 
gyromagnetic ratio by magnetization 
transfer from nuclei with a high  
gyromagnetic ratio (e.g. 1H), 

In Collaboration with Dr. Son-Jong Hwang, California Institute of Technology 
  


