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Transformation of Hydrogenated Bucky-Balls at High pressure

1 - Abstract 2 - Diamond Anvil Cell

Thermodynamics dictate that pre-formed C-H structures will | Mao-Bell type piston-cylinder cells are used. Samples
ith d t the final b are loaded in a 250-300 pm hole in the metal gaskets

hydrogen interactions may depend on the mechanism of bressure gas can be loaded along with the sample as a

: : pressure transmitting medium or reagent. Diamonds
hydrogen introduction. provide unique combination of optical clarity and high

*MD with ReaxFF used to model C60H36 and C60H18 strength allowing for in situ Raman at GPa pressures
°|nvestigate interplay between inter-ball polymerization into
sp3 geometries and on-ball sp? sites of H attachment
*Compress multiple crystal structures up to 30 GPa

*Develop a theoretical model for H release during
hydrocarbon compression

*Test theory and models by comparison to experiment

f 'l._ll
JIII' | \
/ \

W . .
l'h Y
' h . A n N7 ] !
ok | ' |
-.tl‘i 1'1 T ' \;\II\/\J/\/I/V
| [} sialf ] |
L] | e - 1

In-Situ Micro Raman Detection of Reversible Basal Plane
Hydrogenation in Pt-doped Activated Carbon

3 - Molecular Dynamics Simulation 4 - Experimental

A hydrogen transfer reaction

. . . . between C,_ and a complex amine,
Simulations imply that to automatically trap hydrogen gas diethylene triamine, was usedto %

during compression of Cg,H,¢ will require extreme conditions. synthesize Cg,H,, (as verified with

BC NMR and FTIR). 2 70001
At right, MALDI shows broad
distribution of ions from 728 to 740 ~ *

VA& | showing evidence of
hydrogenation. Intense peaks at SOUO_I._I._LL—r- | -—,__| | | | g
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un-polymerized polymerized Compression at 1000K up to 30GPa
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€ Rapid (shock) compression may induce polymerization... \
. . oy o — 103 GPa — 10.3 GPa
Compression from ambient condition to 30GPA — — _
within 1ps, leads to failure of ball structure.

P-V relationship is smooth, and ball structure of
C4oH;¢ molecules remains at high pressures.
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An FT-IR experiment at static high pressure indicates no change in
the C-H stretching region up to 52 Gpa, other than the expected
red shift with pressure. A candidate H, stretch (at ~4250 cm-',
right) is due to either H, evolution and subsequent physisorption
or etalonging effects. Subsequent Raman experiments (with 458,
€ ... and also hydrogen release 488, and/or 633 nm excitation) will differentiate.

4 - Conclusions and On-Going Work

Molecular dynamics simulations suggest rapid compression will polymerize C ,H,., while slow
compression will not. Experimentally, FTIR of C,,H,, that has been compressed up to 52 GPa confirms
static high pressure does not modify the C-H stretching region. Raman spectroscopy studies are on-
going to analyze changes in the lattice modes and C-C bonding, and possible evolution of H, is being
confirmed. Future work includes compression under non-hydrostatic conditions and compression of
solid carbon materials in the presence of H,.

1 - Abstract 2 -Structure and Characterization of AcOx

Development of in situ spectroscopic measurement
techniques capable of combined high-pressure and

variable temperature measurements has allowed us This presentation does not contain
to explore carbon-hydrogen interactions that are . : .
any proprietary, confidential, or

unresolved and debated in the literature. In _ : : _
particular we focused on the hydrogen spillover otherwise restricted information.

mechanism via Platinum catalyst.

°/n situ Raman and DFT to investigate local
interaction between atomic H and the graphite
basal plane adjacent to a Pt dissociation catalyst

*Demonstrate spectroscopic evidence for reversible

hydrogenation of the carbon basal plane via the Raman spectroscopy shows the development of a C-H wag mode on

spillover mechanism exposure to H, and D, (above). AcOx particles are typically 3-5 nm

: . e : thick and are curved on the nm length scale (TEM, below).
These results clarify C-H binding, mechanism for

reversibility, and role of carbon structure and oo H,
doping in mobility and reversibility. " & T

3 -Calculated H Binding Energies and Modes

() :Ptatom
® : Hatom

First principle calculations show the 1160/1180
peak is consistent with C-H wagging, and when

H is replace by Deuterium, the observed peak
shift is as expected from theory. The exact
frequency and binding energy varies with
absorption density, and that this mode has a
significant Raman intensity.

- - :
H (a) Hydrogen atoms may recombine on the surface
via an Eley-Rideal mechanism. The kinetic barrier
Eping = 144 eV ® b, g=171eV Eping = 0414 €V of this transition is about 0.5~1eV
© =1199 cm” o =1144 (H);; 909 (D) © = 804 cm™ (b) Hydrogen atoms may recombine on the
® Ten more configurations calculated but not shown here, among catalyst, after surface diffusion. The barrier is also
which this configuration has the lowest binding energy. Its ~1eV

Raman intensity ratio to that of the G peak is 0.086.
Pt poisoning experiments implicate the latter.

5 - Conclusions
This work gives spectroscopic evidence of hydrogen spillover onto an activated carbon. Simulations
and theoretical calculations are used to confirm the origin of the spectroscopically observed C-H wag
mode and develop thermodynamic arguments for adsorption by spillover and subsequent stability and
desorption mechanisms.




