

- limiting in some hydrogen storage reactions¹
- studying point defect formation and mobility

D: diffusivity of the defect *C*: concentration of the defect

- those that have low kinetic barriers

Formation Energies and Concentration
$$\Delta F_{\text{form}} = \Delta F(\text{supercell}) - \sum_{i}^{\text{elements}} n_{i}\mu_{i} + q\varepsilon_{\text{F}}$$
 ΔF_{form} : formation energy $\Delta F(\text{supercell})$: change in supercell energy $n_{i}\mu_{i}$: chemical potential of atoms in defect $q\varepsilon_{\text{F}}$: charge of defect and Fermi level

Theory of Hydrogen Storage in Complex Hydrides

Christopher Wolverton, Kyle Michel, Yongsheng Zhang Materials Science and Engineering, Northwestern University

Vidvuds Ozolins, Biljana Rolih Materials Science and Engineering, University of California, Los Angeles

Mass Tra
Defe
3 2.5 2 1.5 1 0.5 0 250 300 350 400 Temperature (K vac(B) 0 vac(B) 1- vac(H) 1-
• The lowest formation energy of neutral H ₂ as an interstitial de will dominate mass transport a for carrying the reaction to comp
K. Michel, Y. Zhang, and C. Wolverton,
Nuclea
Initial configuration

ansport: $B_{20}H_{16} \rightarrow 20B + 8H_2$

In Preparation.

ation Model (Future Work)

- Model nucleus as a particle of one phase embedded in another (left image)
- Develop classical potential suited to each system from more accurate first-principles calculations of bulk and interface structures
- Using stochastic methods, search for the ground-state configuration of the nucleus
- Run more accurate first-principles calculations on the interfaces that are found most often since these should be the ones that are the lowest in energy
- Use the interfacial and bulk energies to obtain the nucleation barrier and compare to experimental activation energies

Acknowledgement

the US Department of Energy, Office of Science, Basic Energy Sciences under Grant No. DE-FG02-07ER46433.