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The objective of our researchis to develop fundamental insight into small molecule activation
in molecular complexes that will provide the basis for developing rational approaches in new
catalysis design. Our focus is bi-functional — ambiphilic catalyst centers — molecular
complexes comprised of both electron-rich and electron-poor sites. We are interested in the
development of molecular structures capable of the heterolytic activation of hydrogen. We are
developing new approaches to reaction calorimetry to obtain both kinetic and thermodynamic
data, simultaneously, under in-situ or operando conditions to characterize the energy
landscape of catalytic processes. Our research approach uses a combination of experimental
spectroscopy and computational modeling approaches to study trends in structure-function
relationships that control the thermodynamics and kinetics of small molecule activation.

Introduction
“Sterically demanding phosphine donors and Lewis acids generate an acid-
base couple incapable of adductformation, which opens alternate reaction
pathways”— Douglas Stephan (Science, 2006)

R y— Lewis Acids Lewis Bases
F F
E F F F
T R AR
lBu,,P‘vBMu,,...__“=- n
crap+8-co— | H:NIBH; +H, > H,NBH, Fﬁ e MoTHP
F
Mes P + BPh, == = = Reaction eocurs .
o8- [ [y . - Intramolecular FLP’s
BuP + BPR, "*ﬁ
- soees e, reversibly F, F
Ph,P-B -~ %
tmp + BPR, =7 . My EEF_Q_B‘CHF:J:
Fﬁ FF GoFul
T R = Pr, 'Bu, Mesityl

= === PhN-CH-B' Stephan, Dalton Trans. 2009, 3129 & references

therein; Erker et al. Chem. 5ci. 2011, 2, 1842,
Eﬂﬁmilp*mnmr---- = [ F F

@cHMep +B—| - dossstesp-cH 8
naph+ B - - Mes P-CF-B' RzP (CeFslz -—- RaHP- (CeFslz
W8 : Hy, 100 °C
blam-8 —— |+ BuP-CF. 8" g
diim + B PG HMe—B
Cy,P + BR-CEH), — =<0 ='Pr,'Bu, Mesityl  \wa|ch ot al. Science 2006, 314, 1124
MesF + B o tMP-CHCH B
+B(p-C.F, H:l -

A /.._ # Lack of experimental thermochemical
tmp + 8 data limits quantitative understanding
AG scale adapted from Rokob et al. J. Am. Chem. of reactivity.
Soc., 2009, 131, 10701, DFT with solvent cti - . . .
Wi _EGW” COTTECHION= . A combination of NMR and calorimetry
*AB+ H; = ABH2 thermodynamics from Autrey et al. . . .
is being used to address this gap.

Faraday Discuss. 2011, 151, 1157
B(CsFs)s + Q /(\l\ m ! E'H * BICgFs)a —"‘{ 5“: HETC4F shs
IJI (CsFs)a

”E NMRin C:HsBr

"B NMR in C¢HsBr

C-fcm HETEsFa J

-20 -30

W 20 10 0 -0

*F NMR in C;H;

{ EIH + BCF, I

-1.00 1 mInKeq (PhEr) J\ A\ I

-3.00 alnkeq (CH2ZCIE2)

-6.00 -130 -135 -140 -145 -150 -155 -160
-7.00 - f1 (ppm)

-9.00 , 1 _
00015 00016 00017 0.0018 0.0019 . HNMRin CcDe

kcal/mol PhBr CH,Cl, i | ' C\i‘“
30 ¢ L Wi
AH 7.9 6.7 J,‘ \ | q " e
' T A A N
AS -492 -47.3 16 15 14 13 12 11 10 09 a8 07 08 O
AG -3.2 -2.6 NMR spectroscopic signatures of FLPs.
MNothing observed by ¥F or "B but shift of
Keq 240 81 N-H in 'H NMR.

. U.S. DEPARTMENT OF

' ENERGY

Reaction Calorimetry: Thermodynamics

Reaction Calorimetry: Kinetics

Reaction calorimetry measures the heat flow, q, of the reaction.
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Mechanistic Kinetic Modeling (MKM) can yield detailed insightinto reaction
mechanism: q(t} = ﬂHm"*vnlumE*dCMt MNeed to minimize adjustable parameters:
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Theoretical study of: model reaction
NH;-BCl; + H, > H;N-H,-BCl; — [NH,*][BHCI;]
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Intrinsic Reaction Coordinate, s (A)

“Reaction coordinate s reflects distortion of BCl; from planarity
“H-H stretch remains strong at the S
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Interaction NH;-H-BCl;  [NH3-H,-BCL Polarization is the dominant
(kcal/maol) . _
stabilizing term:
Electrostatic -0.4 -29.7
Exchange 24 416 Distortion of the orbitals
. (effect of the field):
Repulsion 10.1 137.9 -8 1 keal/mol
Polarization -6.7 -59.1
Dispersion 26 99 B-H and N-H bond formation:
(effect of the orbital interaction):
Total -1.9 -2.3
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Future Research

~

Can we tune structure to decrease hydride affinity ?
Can a stronger base compensate for a weaker acid?
How does the strength of acid and base effect kinetics?

How are solvent effects on proton affinity ?
Is pKa scale expanded of compressed?
Is the reaction pathway different for P vs N base?

What FLPs are better for catalysis, intra or intermolecular?

How do we determine the weak forces that hold an FLP together?

What is the optimized structure for splitting H>? end-on, side on?

How does bond distortion effect kinetics?

What dominates the reactivity in an FLP? electric field? Bond distortion?
Does H- act as a ‘wire’for charge transfer?

catalyst structures to tune reactivity to optimize non-metal reduction pathways.

+|f we can start to answer some of these questions we will be able to rationally desig n/
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