1) Background BES021 Ammonia-Borane: a Promising Material for Hydrogen Storage

$H_3NBH_3 \rightarrow$	$\mathrm{H}_{2} + (\mathrm{H}_{2}\mathrm{NBH}_{2})_{n}$	\rightarrow	$H_2 + (HNBH)_n$	\rightarrow	$H_2 + BN$
	6.5 wt% H		13.1 wt%		19.6 wt%

- High storage capacity has drawn attention to hydrogen release methods and mechanisms:
 - Catalyzed hydrolysis
 - Solid thermolysis
 - Catalyzed solid thermolysis
 - Solution thermolysis in ethers and ionic liquids
 - Catalyzed solution thermolysis

Cf. A. Staubitz et al. Chem. Rev. 2010, 110, 4079-4124.

uOttawa

0

This presentation does not contain any proprietary or confidential information

2) Base-Promoted AB dehydrogenation

Enhanced AB H₂-Release with Proton Sponge in Ionic Liquids or Tetraglyme with Reduced Foaming

Proton Sponge Increases Release Rate of Second Equivalent of H₂ from AB

Proton Sponge Induces Loss of a Second H₂-Equivalent from Thermally Dehydrogenated AB

Model Studies: AB/[Et₃BNH₂BH₃]⁻ Reactions Show Chain Growth

X-ray structure Et₃BNH₂BH₃⁻

DFT optimized structure of [Et₃BNH₂BH₂NH₂BH₃]⁻

GIAO calculated ¹¹B chem. shifts: -8.2, -12.0, -23.5 ppm

Verkade's Base Also Activates AB H₂-Release

Equiv. of H₂

Ewing, W. C.; Marchione, A.; Himmelberger, D. W.; Carroll, P. J.; Sneddon, L. G. *J. Am. Chem. Soc.* **2011**, *133*, 17093.

h

Verkade's Base / AB Reactions Allow Isolation of Chain Growth Products!

uOttawa

Crystallographic Studies Confirm Formation of Isomeric Chain Growth Products

Anions Show Extensive N-H--H-B Hydrogen-Bonding in the Solid State

uOttawa

Anionic H₂-Release/Chain-Growth Reactions Facilitated by N-H--H-B Bonding

uOttawa

3) Activated AB Dehydrogenation in Ionic Liquids

Significantly Faster Rates for AB H₂-Release In Ionic Liquids with Only Small Temperature Increases

AB H₂-Release versus Temperature for 50 wt. % bmimCl/AB

increase mat.-wt. % by decreasing % ionic liquid

Fast Rate and 11.4 mat.-wt. % H₂-Release Demonstrated for 20 wt. % IL/AB at 110 °C

NMR Studies Identify Initial and Final Release Products

Why Use Metal Catalysts for AB Dehydrogenation in Ionic Liquids?

Catalysts in Conjunction with Ionic Liquids Could Provide:

- Faster H₂-Release
- Better Control of H_2 -Release Rates
- Lower Temperature
 Reactions
- Synergistic Release Mechanisms

Wright, W. R. H.; Berkeley, E. R.; Alden, L. R.; Baker, R. T.; Sneddon, L.G. Chem. Commun. 2011, 47, 3177.

Selectivity of Metal-Catalyzed AB Dehydrogenation Dictates Extent of H₂ Release

- Release of H_2NBH_2 and formation of BN-ethylcyclobutane intermediate are key to greater hydrogen release
- Details of borazine and polymer formation not yet fully understood

Ru Complex Catalyst is More Active in IL Solvent

Ru-catalyzed AB Dehydrogenation Selectivity best with more Strongly Coordinating IL Anions

• Ionic Liquids with weakly coordinating anions afford similar products as those from diglyme reactions using $RuCl_2(PMe_3)_4$ catalyst precursor: PAB = insoluble poly(aminoborane); CTB = BN cyclohexane analog; Bz = BN benzene analog

• With more strongly coordinating anions, no PAB is formed and more hydrogen is thus released with formation of BCDB (BN-ethylcyclobutane analog), Bz and polyborazylene (BN polyaromatic hydrocarbon analog)

Possible Origin of Observed Selectivity

- AB dehydrogenation needs a single coordination site
- Ionization of the catalyst to borohydride salt creates second vacant coordination site needed for metal-catalyzed dehydrooligomerization

IL 'Cation Effect'

General conditions: AB (80 mg), IL (200 mg) and 0.8 mol% $[RuCl_2(PMe_3)_4]$ (**1**). K = $[P(n-Bu)_4][CI]$, L = $[P(n-Bu)_4][O_3SOEt]$, M = $[P(n-Bu)_4][OAC]$, N = $[P(n-Bu)_4][OTf]$, O = $[P(n-Bu)_4][Br]$, P = $[P(C_{14})_3C_6][OTf]$, Q = $[P(C_{14})_3C_6][O_3SOEt]$, R = $[P(C_{14})_3C_6][NTf]$, S = $[P(n-Bu)_4][NTf_2]$.

uOttawa

4) Investigating the 2nd Equivalent of H₂ from AB Synthesis of BN Ethylcyclobutane

- In previous work we showed that Ni-N-heterocyclic carbene and Fe-PMe₃ complexes and AB allowed for significant build-up of BCDB intermediate.
 R.T. Baker et al. J. Am. Chem. Soc., 2007, 129, 1844-1845.
- Early work showed that Zr complexes are poor catalysts for AB dehydrogenation but we find that Schwartz's reagent affords workable yields of BCDB!

Characterization of BCDB

¹¹B NMR (blue) and ¹¹B {¹H} NMR (red) of crude reaction mixture and purified BCDB. Sublimed (80 $^{\circ}$ C @ < 1 torr) sample contains ca. 10% CTB.

Thermal and Catalytic Dehydrogenation of BCDB

Reaction conditions for B-D: 15 mol % catalyst, THF, 60 °C, 16 h.

- Thermolysis of BCDB effects isomerization to CTB and undergoes a minor hydrogen redistribution reaction to give borazine and AB
- While catalysts 3 or 4 convert BCDB (but not CTB) to borazine and polyborazylene, 5 and 6 convert both isomers

uOttawa

5) Iron Catalysts for AB dehydrogenation Iron Amido Phosphine Complexes

- Earth abundant, inexpensive, non-toxic iron catalysts would be best for transportation applications
- Previous work on bifunctional iron amido complexes showed selectivity control but unwanted reactivity of N-ligands

R. T. Baker et al. J. Am. Chem. Soc. 2012, 134, 5598.

• Complex **1** is selective for poly(aminoborane) but basic N-ligand leads to Fe(0) and cyclic diazaborane: Ph HB

• Complex **2** is unselective catalyst and decomposes to Fe(0) and phosphine-borane

Ph

Robust Iron Complex Catalysts for Selective Synthesis of Poly(aminoborane)s

Using 5 mol% 1 primary amine-boranes H_2RNBH_3 , are converted cleanly to poly(aminoborane)s (R = Me, *n*-Bu); will chiral bis(phosphines) allow for tacticity control?

Iron Chloride Generates Effective Heterogeneous Catalyst for AB Dehydrogenation

- Mixtures of AB and FeCl₂ in diglyme release hydrogen as solution turns black and deposits a mirror on vial wall
- 5 mol% FeCl₂ precatalyst was used in all the above experiments; however 1 mol% catalyst loading gave similar results.

This system exhibits unprecedented selectivity to borazine and polyborazylene (minimal insoluble poly(aminoborane) by-product) for a heterogeneous catalyst. Now preparing high surface area samples on BN support for higher reaction rates.

Iron-on-iron-boride Catalyst is Reusable

Catalyst recycling experiment for AB dehydrogenation at 75 °C.

¹¹B{¹H} NMR spectra of the first (blue), second (red) and the third (green) runs. The iron mirror on the reaction vial was used for the second and third runs.

Conclusions

- Detailed studies of base-promoted AB dehydrogenation confirmed chain growth mechanism to give linear and branched aminoborane oligomers that undergo further H₂ release to sp² BN products analogous to solid-state AB thermolysis pathway
- Use of metal complex catalysts in ionic liquid solvents led to synergistic pathways for H₂ release from AB wherein nature of IL anion can dictate catalyst selectivity
- New preparation method for BN ethylcyclobutane intermediate allowed for determination of its thermolytic- and metal complexcatalyzed dehydrogenation properties
- Iron bis(phosphine) dihydride complexes are first selective base metal catalysts for poly(aminoborane) formation
- Iron-on-iron-boride catalysts derived from FeCl₂ and AB are first reusable, selective heterogeneous catalysts – operation of BNsupported catalysts in ionic liquid solvents will be pursued with Hydrogen Storage Engineering Center of Excellence

Acknowledgements

- This project was generously supported by DOE BES grant DE-FG02-05ER15719-AO.
- Thank you also to the DOE-EERE Chemical Hydride and Engineering Hydrogen Storage Centers of Excellence for useful discussions and leveraged instrumentation.
- Prof. Baker thanks the University of Ottawa, Canada Research Chairs program, Canada Foundation for Innovation and the Ontario Ministry of Economic Development and Innovation for equipment and lab support, and H2CAN participants for useful discussions.

Mechanistic Studies of Activated Hydrogen Release from Ammonia-Borane

Larry G. Sneddon,* Martin Bluhm, Dan Himmelberger, William Ewing, Laif Alden, Emily Berkeley, Chang Won Yoon and Allegra Marchione, *University of Pennsylvania, Department of Chemistry, 231 S. 34th Street, Philadelphia, PA 19104-6323*

R. Tom Baker,* Richard Burchell, Felix Gaertner, Hassan Kalviri, Morgane Le Fur, Larena Menant, Giovanni Rachiero Matthew Rankin, Johannes Thomas, and William Wright, University of Ottawa, Department of Chemistry and Centre for Catalysis Research and Innovation, 30 Marie Curie, Ottawa, ON K1N 6N5 Canada

