

U.S. DEPARTMENT OF

Fuel Cells Sub-program - Session Introduction -

Dimitrios Papageorgopoulos

2012 Annual Merit Review and Peer Evaluation Meeting May 15, 2012

Goal and Objectives

GOAL: Develop and demonstrate fuel cell power system technologies for stationary, portable, and transportation applications

Objectives

- By 2015, a fuel cell system for portable power (<250 W) with an energy density of 900 Wh/L
- By 2017, a 60% peak-efficient, 5,000 hour durable, direct hydrogen fuel cell power system for transportation at a cost of \$30/kW
- By 2020, distributed generation and micro-CHP fuel cell systems (5 kW) operating on natural gas or LPG that achieve 45% electrical efficiency and 60,000 hours durability at an equipment cost of \$1500/kW
- By 2020, medium-scale CHP fuel cell systems (100 kW–3 MW) with 50% electrical efficiency, 90% CHP efficiency, and 80,000 hours durability at an installed cost of \$1,500/kW for operation on natural gas, and \$2,100/kW when configured for operation on biogas
- By 2020, APU fuel cell systems (1–10 kW) with a specific power of 45 W/kg and a power density of 40W/L at a cost of \$1000/kW

Challenges & Strategy

U.S. DEPARTMENT OF

The Fuel Cells sub-program supports research and development of fuel cell and fuel cell systems with a primary focus on reducing cost and improving durability. Efforts are balanced to achieve a comprehensive approach to fuel cells for near-, mid-, and longer-term applications.

FOCUS AREAS

Stack Components Catalysts Electrolytes MEAs, Gas diffusion media, and Cells Seals, Bipolar plates, and Interconnects

> Operation and Performance Mass transport Durability Impurities

Systems and Balance of Plant (BOP)

BOP components Stationary power Fuel processor subsystems Portable power APUs and emerging markets

R&D portfolio is technology neutral and includes different types of fuel cells.

Challenges and Strategy: Automotive Applications

U.S. DEPARTMENT OF

Low Value

High Value

\$48 \$50 \$52 \$54 \$56 \$58 \$60

- Strategic technical analysis guides focus areas for R&D and priorities.
- Need to reduce cost from \$49/kW to \$30/kW and increase durability from 2,500 to 5,000 hours
- Advances in PEMFC materials and components could benefit a range of applications.

Power Density

Pt Loading

Air Compressor Cost

Air Stoichiometry

Membrane Cost

Compressor/Expander Eff.

System Cost (\$/kWnet)

Strategies to Address Challenges –

Catalyst Examples

\$46

- Lower PGM Content
- Pt Alloys

\$42 \$44

- Novel Support Structures
- Non-PGM catalysts

Targeted 80 kW PEM fuel cell system cost: \$30/kW at 500,000 units/yr

Analysis highlights need for fuel processor cost reduction.

U.S. DEPARTMENT OF

ENER

Cost Breakdown, 5 kW LT PEM

SOFC system analysis currently underway

Fuel Cells Budget

FY 2012 Appropriation = \$45.0 M FY 2013 Request = \$38.0 M

New projects in FY2012 for BOP and MEA Integration were fully funded up front

EMPHASIS:

- Develop improved ultra-low PGM and non-PGM fuel cell catalysts and membrane electrolytes
- Improve PEM-MEAs through integration of state-of-the-art MEA components
- Identify degradation mechanisms and approaches for mitigating the effects
- Characterize and optimize transport phenomena improving MEA and stack performance
- Investigate and quantify effects of impurities on fuel cell performance
- Develop low-cost, durable, system balance-of-plant components
- Maintain core activities in components, subsystems and systems specifically tailored for stationary and portable power applications

*Subject to appropriations

Progress – Fuel Cells R&D

U.S. DEPARTMENT OF

Projected highvolume cost of fuel cells has been reduced to \$49/kW (2011)*

 More than 30% reduction since 2008

 More than 80% reduction since 2002

*Based on projection to high-volume manufacturing (500,000 units/year). The projected cost status is based on an analysis of state-of-the-art components that have been developed and demonstrated through the DOE Program at the laboratory scale. Additional efforts would be needed for integration of components into a complete automotive system that meets durability requirements in real-world conditions.

Progress: De-alloyed Catalysts

U.S. DEPARTMENT OF

Low-PGM de-alloyed catalysts meet mass activity and durability targets.

GM 50 cm² MEAs, at 0.1 mg_{Pt}/cm² H₂/air, 80° C, 170 kPa_{abs}, stoichs 2/2

- PtCo₃ and PtNi₃ meet 0.44 A/mg_{PGM} mass activity target
- PtCo₃ meets 30,000 cycle durability target
- PtNi₃ meets 0.56 V @ 1.5 A/cm² milestone

GM 50 cm² MEAs, 0.2 mg_{Pt}/cm²

 $\begin{array}{l} \textbf{0.46 A/mg}_{PGM} \text{ for } PtCo_3, \\ \textbf{0.52 A/mg}_{PGM} \text{ for } PtNi_3 \text{ in } 50 \text{ cm}^2 \text{ MEA} \\ \text{testing} \end{array}$

High-activity catalysts developed for liquid fuels

- JMFC's ternary PtRuSn/C DMFC catalyst combines advantages of PtSn at low overpotentials and PtRu at high overpotentials
- PtRuSn/C outperforms the best thrifted PtRu/C catalyst

PtRuSn/C methanol mass activity exceeds **500 mA/mg_{Pt}** at 0.35 V, **150% higher than FY12 milestone**

 DME fuel cell outperforms DMFC at low current due to low DME crossover

DME fuel cell achieves 150 mA/cm^2 at 0.5 V – 60% higher than FY11, 130% higher than best published data

P. Zelenay et. al., LANL

Progress: Durable Catalysts

3M catalysts demonstrate durability under startup, shutdown, and cell reversal.

IrRu-modified cathodes have achieved the SU/SD Go/No Go requirement: 5,000 cycles with end voltage < 1.60 V, ECSA loss <10% with < 0.09 mg/cm² PGM IrRu-modified anodes have achieved the cell reversal Go/No Go requirement: 200 cycles with end voltage < 1.80 V, with < 0.045 mg/cm² PGM

All Go/No-go milestones surpassed at:

- PGM loading < 0.135 mg/cm² total
- Voltages meet the set goals

Progress: Balance of Plant

Compact, low-cost humidifier module projected to meet \$100/unit 2017 cost target

High performance, cost-effective humidification membranes developed

Scale-up of these materials is underway

Flow field, pleat geometry and module design optimization to take advantage of very high transport rate materials, while maintaining low-cost assembly process.

Membrane pocket over plate assembly concept selected

Module performance consistent with single cell and ex situ testing shows loss of performance of 20-30% over 5500 hours

Developed understanding of source of durability loss – chemical changes in PFSA

Sub-scale module design complete, and sub-scale prototypes built and under test

Final full scale module to be built

Module cost estimated to be ~\$100 at high volumes

W. B. Johnson et al., Gore®

New Fuel Cell Projects

5 new projects announced in FY 2011 (cost analysis) and FY 2012 (R&D) — total award of ~\$10M

Cost Analysis

Transportation (Strategic Analysis)

 Analyze and estimate the cost of transportation fuel cell systems for use in vehicles including light-duty vehicles and buses

Stationary and Emerging Markets

(Battelle, LBNL)

 Develop total cost models and provide cost assessments for stationary and emerging market fuel cell system technologies

Research & Development

MEA Integration (3M)

 Approach is based upon integration of 3M's state-of-the-art nanostructured thin film catalyst technology platform with other components of the MEA

System BOP (Eaton)

 Develop and demonstrate an efficient and low-cost fuel cell air management system

- This is a review, not a conference.
- Presentations will begin precisely at scheduled times.
- Talks will be 20 minutes and Q&A 10 minutes.
- Reviewers have priority for questions over the general audience.
- Reviewers should be seated in front of the room for convenient access by the microphone attendants during the Q&A.
- Please mute all cell phones and other portable devices.
- Photography and audio and video recording are not permitted.

Deadline to submit your reviews is May 25th at 5:00 pm EDT.

- ORISE personnel are available on-site for assistance.
 - Reviewer Lab Hours: Tuesday Thursday, 7:30 am 8:30 pm; Friday 7:30 am – 1:00 pm.
 - Reviewer Lab Locations:
 - Crystal Gateway Hotel—Rosslyn Room (downstairs, on Lobby level)
 - Crystal City Hotel—the Roosevelt Boardroom (next to Salon A)
- Reviewers are invited to a brief feedback session at 5:45 pm Thursday, in this room.

For More Information

Fuel Cells Team

Dimitrios Papageorgopoulos

Fuel Cells Team Leader 202-586-3388 dimitrios.papageorgopoulos@ee.doe.gov

Nancy Garland

Catalysts, Durability, Impurities, International 202-586-5673 nancy.garland@ee.doe.gov

Donna Lee Ho Durability, Membranes, APUs, Portable Power, Mass Transport 202-586-8000 donna.ho@ee.doe.gov

Greg Kleen Membranes, Mass Transport, MEAs, High-T Fuel Cells 720.356-1672 greg.kleen@go.doe.gov

Jason Marcinkoski Cost Analysis, Bipolar Plates, BOP, Automotive, Stationary Power 202-586-7466 jason.marcinkoski@ee.doe.gov

Acknowledgements:

Tom Benjamin, John Kopasz, Walt Podolski (ANL), Cassidy Houchins (SRA International), Larry Blair (Consultant)

Kathi Epping Martin

USDRIVE Fuel Cell Tech Team, Membranes, MEAs, Durability, Fuel Processors, Stationary Power 202-586-7425 kathi.epping@ee.doe.gov

David Peterson

Stationary Power, High-T Fuel Cells, Catalysts, Durability, Fuel Processors, APUs 720-356-1747 david.peterson@go.doe.gov

Reginald Tyler

Cost Analysis, BOP, Durability, Impurities, Portable Power, Stationary Power 720-356-1805 reginald.tyler@go.doe.gov

Jacob Spendelow

Technical Advisor on Detail from LANL 202-586-4796 jacob.spendelow@ee.doe.gov

Principal Participating Organizations

Testing and Technical Assessments

- Battelle
- LBNL
- LANL
- Strategic Analysis
- NREL
- ANL
- ORNL
- NIST

Balance of Plant

- W. L. Gore & Associates
- Eaton

Catalysts & Supports

- BNL
- PNNL
- 3M
- LBNL
- ANL
- LANL
- General Motors
- Northeastern University
- University of South Carolina
- Illinois Institute of Technology
- NREL

Durability

- Ballard
- LANL
- ANL
- Nuvera Fuel Cells
- Dupont

Impurities and Fuel Processors

- NREL
- University of Hawaii

Membranes

- Giner Inc.
- University of Central Florida
- Ion Power

MEA Integration

– 3M

Portable Power

- Arkema Inc.
- LANL
- University of North Florida

Stationary Power

- Acumentrics
- UTC
- Innovatek

Mass Transport

- SNL
- LBNL
- Nuvera Fuel Cells
- Giner Inc.
- General Motors