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Overview 

Timeline 
• Project start date:  August 1, 2009 
• Project end date:   July 31, 2013 
• Percent complete: ~ 65% (03/2012) 

 

 
 

 

Partners/Collaborators 
• AFCC (Subcontractor – *under consideration) 

̶ Independent evaluation, Short-stack testing, 
Ex-situ/in-situ characterization, Integration, 
Fundamental understanding  

• Dalhousie University (Subcontractor)   
– High-throughput catalyst synthesis and basic 

characterization 

• Oak Ridge National Lab (Subcontractor)  
̶ STEM Characterization 

• Argonne National Lab (Collaborator)   
– Stability Testing, XAFS, Selective ORR 

Inhibitor 
  

3M (Project lead) Barriers 
 

Electrode Performance: 
Catalyst durability under  
• start-up & shut-down (SU/SD) 
estimated at ~ 4,000 events  
and  
• cell reversal (CR) 
estimated at ~ 200 events 

Budget    

  

Total:                          $ 5,782,165   Funding Received in FY11:   $ 1,258,190 
- Contractor Share:  $ 1,156,433            Planned Funding for FY12:   $    550,000 
- DOE Share:             $ 4,625,732   
          (includes $ 400K to ORNL) 
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Objectives and Relevance 
Objective:  
Develop catalysts that will enable PEM fuel cells systems to weather the damaging conditions in 
individual fuel cells during transient periods of fuel starvation, thus making it possible to satisfy 2015 
DOE targets for catalyst performance, PGM loading, and durability.  
Relevance:  
Fuel starvation could result in high positive voltages at the cathode during start-up/shut-down 
(SU/SD) or, at the anode, during cell reversal (CR). This project will develop a catalyst that favors the 
oxidation of water over the dissolution of platinum and carbon at voltages encountered beyond the 
range of normal FC operation and beyond the thermodynamic stability of water (> 1.23 V).   
Approach:  
Materials based, as such, protection is provided from within the MEA and is therefore always “ON”. 
Implementation: 
Via two catalyst material concepts: 
 

1. Catalysts with high oxygen evolution reaction (OER) activity 
i. At the cathode for SU/SD (slides 6 – 9) 
ii. At the anode for cell reversal (slides 10, 11) 

2. Anode catalysts with low oxygen reduction reaction (ORR) activity for SU/SD (slide 12, 13) 
Evaluation:  
-  Lab-scale for material development 
- Scale-up to full size CCMs  
- Short stack integration and testing with AFCC test protocols (slide 14, 15) 
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OER-Cathode-SU/SD 

OER-Anode-CR 

ORR Suppression-Anode 

Background info: #22 



Task 1: OER 
Active Catalyst 

# of 
Cycles 

PGM 
(mg/cm2) 

End 
Voltage 

ECSA  
Loss (%) Status/Comments 

SU/SD (Cathode)     (>)        (<)             (<)        (<) 
2011 5,000 0.095 1.60 V 12% Achieved 09/2011 
Go/No Go 5,000 0.090 1.60 V 10% Achieved 01/2012; End Voltage: 1.48V 
2013 5,000 0.088* 1.45 V 10% *Under consideration 

Cell Reversal (Anode) 
2011 200 0.050 2.00 V Achieved 09/2011 
Go/No Go 200 0.045 1.80 V Achieved 01/2012; End Voltage: 1.65V 
2013 200 0.037* 1.75 V *Under consideration 

 
Task 2: Suppression of 
ORR (Anode) 

Go/No Go A factor of 10 in the kinetic region Achieved 01/2012; A factor > 100 
2013 A factor of > 100* in the kinetic region *Under consideration 

Task 3: Scale-up 
2013 Scale up to full size cells; 

Independent evaluation 
Evaluated in 2012:  
> 10 full scale/short stacks 

Approach/Milestones 

Additional 2012 Tasks 
• New SU/SD test procedure upon Tech Team and Durability Work Group recommendations 
• Fundamentals of Ru and Ir OER activity and stability 
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• 100 mV/s ramp: mimics H2 front. 
 

• 1.6 V upper limit or to 5 mC/cm2: mimics the 
equivalent amount of O2 to be reacted off for H2/H+ 
electrode potential to be established. 
 

• 650 mV every 10 cycles/pulses: mimics cell voltage 
during normal operation. 

 

• ECSA every 1,000 cycles 

• Durability criteria:  
> 5,000 cycles; > 5 mC/cm2; < 1.6 V ; ∆ ECSA < 10%  

Task 1: SU/SD Generic Electrochemical Equivalent Test  

50 s at 650 mV every 
10 cycles 

Time, s 
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Note: Current responses, mostly reversible, 
depend dramatically on OER catalyst state: 

Current immediately after the 650 mV step is the 
highest due to the contribution of the PtOx 
formation and the OER component regeneration.  

5000 Pulses (Total) Every 
1000 Pulses 
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Go/No go SU/SD: 90 µg/cm2 PGM total; New Protocol @ 100 mV/s, up to 1.6 V 
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Cycle 
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Cycle 
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Cycle 
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Cycle 
n10 

Cycle 
nn1 

Cycle 
nn2 

120 mV lower end V with IrRu 

Note: Test done with 1A/50 cm2 
(nominally) current limit, 
sufficient for achieving 
required 5 mC/cm2 

 At cycle nn1 current w/IrRu is 3 
times higher than substrate Pt. 
Most critical: At cycle n10 
current with IrRu is > 5 times 
higher, sufficient for G/NG 

Only at cycle nn1 Pt produces 
charge over required 5 mC/cm2 

With OER catalyst, the charge 
at cycle 5,000 is > 5 mC/cm2 

Oxide reduction charge at 0.65 V 
HOLD is much higher for Pt: 
OER catalyst restrains Pt 
voltage to less oxidative values! 
(Cycle 1499-1501) 

85 µg Pt 85 µg Pt + 2 µg OER 

O
ER

-C
at

ho
de

-S
U

/S
D 

Pt
 

Pt
O

x 



SU/SD: Comparison of Pt only with Pt w/ 1, 2, 10 µg/cm2 IrRu 
Points for cycles n01 (upper lines) and n10 (lower lines) presented 
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Note: Test done with 
current limit of 1 A/50-cm2  

Cell voltage with 10 
µg/cm2 IrRu unaffected 
after 5,000 cycles 

For Pt current @ 1.6 V 
presented. Note the spread 
between the current 
before (n10) and after 
(n01) “regeneration” at 
650 mV. 

Charge  with IrRu is above 
required 5 mC/cm2 during 
all 5,000 cycles. 

Charge on Pt is above only 
during n01 cycles and is due 
to PtOx formation rather 
than water oxidation. 
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Cycles 
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Polarization curves: #24 
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ECSA and FC Performance before, during, and after 5,000 SU/SD 

For many samples at 2, 5, and 10 
µg/cm2 ECSA loss after 5,000 SU/SD 
cycles is less than G/NG goal of  10%. 

Considering both performance and  
ECSA, it appears that optimum OER 
loading is around 2 µg/cm2. 

Samples have achieved the 
Go/No Go requirement: 
2 µg/cm2 OER catalyst have 87 
µg/cm2 total PGM loading 
(nominal) and  
~ 10% ECSA loss. 
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OER Loading (µg/cm2) 

45 samples tested 
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Cell Reversal: 2011 and Go/No Go Milestones 
23 samples; 4 + replicates per RuIr loading 1 – 10 µg/cm2 on 40 µg/cm2 Pt/NSTF  

(Fabricated at the 3M Menomonie pilot plant, 200 ft lineal) 

Test protocol:  
 

• 1. MEA Conditioning 
• 2. ECSA  
• 3. 20 pulses* @ 12 mA/cm2; 60 s 
• 4. 20 pulses   @ 44 mA/cm2; 30 s 
• 5. ECSA 
• 6. 100 pulses @ 200 mA/cm2; 15 s 

2 V upper limit 
• 7. 10 min at close to 0 V 
• 8. 100 pulses @ 200 mA/cm2; 15 s 

2 V upper limit 
• 9. ECSA 
 

 
Additional durability: 
•  Continuous polarization  
 @ 200 mA/cm2; 2 V upper limit 
 

* All pulses (cycles) square wave followed  
 by –1 mA/cm2 for 1 min. 

FC conditions: 
70/80/80 oC; 1000 sccm 
A: N2; C: H2 

All 6 samples tested w/ 10 µg OER have passed 200 cycles 
with a lot of “room” to spare. These samples fulfilled 
Year 2 milestone. 

To strictly fulfill the PGM loading requirement NOMINALLY 
8 µg/cm2 OER on 37 µg/cm2 Pt/NSTF was fabricated.  
These samples fulfilled the Go/NG milestone! 

200 x 200 mA/cm2  
2011:  Ecell < 2.0 V; 0.050 mg/cm2 PGM 
G/NG: Ecell < 1.8 V; 0.045 mg/cm2 PGM 
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Pt loading determines ECSA: 
50 > 40  > 37 µg/cm2  Pt 

Final Voltage and Durability 
Continuous 200 mA/cm2 

 after the 200X200-mA/cm2 pulses 

Small differences in 
initial voltage translate 
to appreciable changes 
in durability 
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• OER loading and Pt loading enhance OER 
activity. 
• Durability follows the same loading pattern 
• The G/NG loading, 37 Pt + 8 RuIr µg/cm2 
is 150 mV lower than the G/NG voltage 
target (1.8 V) 
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Task 2: 3M vs. ANL calix[4]arene ORR suppression on Pt(111)  
- 3M SYNTHETIC ROUTE OF CALIX[4]ARENE THIO DERIVATIVES - 

ORR activity after exposure @ 1.05 V 

∆E1/2 

0.34  V 

• ORR Suppression of > 0.3 V warrants further synthetic effort 
• Stability to be examined in the CR region of high anode 
potentials, > 1.4 V 

Yield: 
3M 
(ANL) 

•Both samples relatively stable up to 0.95 V 
(i.e. the scans reached a steady state). 
•At 1.05 V, 3M calix changes more than the 
ANL suggesting somewhat lower stability. 

Larger UPD region 
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CVs after exposure @ 1.05 V 
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ORR Suppression: “Mixed” Anode Catalyst and Low Pt Loading Effect 

Mixed Pt binary with “Additive” 

> 300 mV translate to >1,000 times slower ORR Pt  loading plays a prominent role in  
ORR suppression: 

At 0.1 A/cm2:   160 > 120 > 100 mV 
Pt, µg/cm2:       37      40      50 

       

PtNi NSTF cathode 
(for comparison) 
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Low Pt Loading Effect on Suppression 
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The OER  added catalyst did not interfere 
with the normal HOR anode operation! 

Produced at 
Dalhousie 
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 Task 3: Scale up and Independent Evaluation 
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 Produced: Hundreds of lineal meters of fully integrated OER catalyst on Pt/NSTF 
 Converted: OER-Pt/NSTF in full size CCMs 
 Evaluated: Short Stacks by AFCC for Cell Reversal and SU/SD 

In stacks, as in AFCC’s subscale configuration 
(reported in 2011 AMR) the OER-Pt/NSTF anode 
consistently outperformed dispersed baselines 
with higher loadings 
 
Despite lower tolerance than in subscale 
hardware, the NSTF anode concept still has a very 
good reversal tolerance for the given loadings 
 

Overview of AFCC OER/NSTF Evaluation 
• The NSTF anode + OER concept has been evaluated at AFCC during the last two years. 
• Significant effort using both subscale and full scale testing has been done following AFCC’s  demanding 
technology development process using anodes tailored for AFCC requirements 
• In 2011, over 10 short stacks and over 80 MEAs using OER-Pt/NSTF anode have been tested in full scale 
architecture 
• Promising results demonstrating performance, CO tolerance, freeze tolerance, SU/SD benefits, and reversal 
tolerance 
• Overall results: the OER modified NSTF anode is a promising MEA vehicle component. 
 

            

 
 

 
 

 

Stack Reversal Tolerance Results 
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• NSTF anode has a positive impact on SU/SD durability in a gas switching SU/SD AST 
 • The NSTF anode + OER catalyst is very 

selective 
– Inhibits ORR as shown by polarization 

results 
• Smaller (secondary) effects  

– Low Ru content leads to lower Ru 
crossover related degradation 

– Some Ir may migrate to the cathode and 
have a OER cathode effect 
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Future Challenges: 
• OER/NSTF performance should have no negative 

impact compared to a conventional dispersed 
anode 

• Stability of the OER layer under extended drive 
cycles (2,000 hours) and after SU/SD testing  

• Testing for anode contaminants (in addition to 
CO)  

• 3M and AFCC driving fundamental understanding 
of engineering issues related to interfaces and 
compatibility of OER/NSTF with other MEA 
components and anode layer design 
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OER  Fundamentals: Ru Stability and OER Activity 

Three consecutive polarization 
curves for 2 µg/cm2 Ru at 1.45 V 

First polarization curves for 
10 µg/cm2 and 2 µg/cm2 Ru 

Tafel region on the positive going 
scans as indicator of Ru stability   

Ru stability region: overlapping of the 
negative going with the subsequent 
positive going scan:  1.40 – 1.42 V 
 
 
 
 

(Ir mass activity @1.55 V: 3.9 A/mg 
Published: 1.5 A/mg) 

#1 
 
 

#2 
 
#3 

Tafel relationship in a 
very narrow range: 
~1.35 - 1.39 V 
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Ru mass activity (first scan) at 1.45 V: 
4 A/mg  

(Published: 0.1 A/mg) 

16 
E, V vs. SHE 

E, V vs. SHE 

More info: #25 



STEM (a) and EDS map (b) of Ir 10 µg/cm2 on Pt-
NSTF after FC performance tests.  Nearly all the 
Ir remains on the whisker surface  indicating Ir, 
unlike Ti and Ru, is stable in FC environment. 

XPS Core Level Spectra of tested CCM. Anode side: Ir 4f, Ru 3p and Ti 2p peaks (blue curves); Cathode 
(counter) side: No Ru, Ti and Ir peaks detected in the same BE region for uncoated Pt-NSTF (red curves) 

OER  Fundamentals : End of test STEM of Ir and High resolution XPS of Ir, Ru and Ti 
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In tested MEAs, EDS did not detect any Ti or Ru. 



Collaboration 

Partners 
• AFCC (Subcontractor -* under consideration):  

– Independent evaluation, Short-stack testing, Ex-situ/in-situ characterization, 
Component integration, Fundamental understanding  

• Dalhousie University (Subcontractor): High-throughput catalyst synthesis and basic 
characterization 

– Fully integrated since its inception, during the proposal phase 
– It runs as one single program 
– Results reviewed during weekly scheduled teleconferences and many more 

unscheduled contacts between participants. 
• Oak Ridge National Lab (Subcontractor): STEM Characterization 

– Samples analyzed provide invaluable insight into the OER catalyst 
– STEM and EDS analysis fully synchronized with catalyst development 

• Argonne National Lab (Collaborator; Partnership with two groups): 
–  EXAFS characterization and OER catalyst stability 
–  ORR suppression on anode 
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The major directions for Phase 2 are condensed in four work packages: 

• Further R&D of the OER catalyst with respect to PGM loading and durability 
 Attempt to reach New Milestones with total PGM lodgings aligned with the 
2015 DOE targets of 0.125 mg/cm2 total. 
 Assess the limits of PGM cathode - anode distribution while preserving the 
required cathode (ORR) and anode (HOR) performance. 

• Fundamental materials studies aimed at understanding the extraordinary 
activity and stability of the OER-Pt NSTF catalysts; 

• Fundamental engineering studies of the OER-Pt NSTF catalysts aimed at 
understanding the processing, integration and interaction with other MEA 
components; 

• OER-Pt NSTF catalysts evaluation readiness for “real life” automotive 
applications.  
 

Future Work: Phase 2  
(Draft: under Consideration by DOE) 

19 
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 All Go/No Go milestones have been achieved: 
 

 200 cycles of 200 mA/cm2 for cell reversal with 0.045 mg/cm2 total PGM on the anode with 
1.8 V upper limit (Actual: 1.67 V). 

 5,000 startup cycles under the newest protocol with 0.09  mg/cm2 total PGM on the 
cathode with ECSA loss of < 10%;  

 Reduced ORR current on the anode by a factor of > 10 (Actual  > 1000). 
 

Other major achievements: 
 

• Achieved unprecedented OER mass activity 
 NSTF delivered a new level for OER activity as did for ORR/NSTF 

• Performance proved in short stacks at AFCC (Task #3) 
• OER/NSTF brought NSTF very close to “real”/stack application 

 

General:  
• Most of the work proposed and outcomes envisaged have been realized and/or 

accomplished by 3M, AFCC and their partners/collaborators. 

Summary 
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Technical Back-Up Slides 
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SU/SD and OER Catalysts Development Fundamentals 
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Can OER -  Pt/NSTF protect CARBON? 

1. Combo Pt/HARD CARBON added/adjacent to OER -  Pt/NSTF 
- Cell Reversal Test - 

12 mA/cm2 Pulses • Catalyst failed at pulse 
#9! 
• Carbon deterioration is 
obvious in the CVs  

2. Combo Pt/HARD CARBON with admixed OER  
- SU/SD- 

•The catalyst failed at cycle 
#1060, vs. OER – Pt/NSTF, 
which with ½ of RuIr routinely 
achieved  5,000+ cycles. 
•No carbon deterioration is 
obvious in the CVs  
• Pt Hupd does not seem to 
decrease a lot 

Conclusions 
• Different deterioration 
mechanisms in the two tests are 
due to the upper voltage: 1.75 V in 
CR vs. 1.45 V in SU/SD. 
• Neither of the carbon catalysts 
are stable enough to withstand any 
of these voltages 
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OER Activity: OER Polarization Curves before and after 5,000 SU/SD Cycles  
Potential sweep @ 2 mV/s 

(Pt loading: 85 µg/cm2) 
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OER activity is maintained better with OER catalyst loading 
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BOT @ 1.4 V Symbols:  
Open: before 
Closed: after 
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OER Loading, µg/cm2 
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E, V vs. NHE 

Ru 
Ir 

Ti 
Pt 

Ru Ru 

Ru, Ir, Ti Initial Characterization: streamlined version 

At 1.45 V, only Ru produced 
a substantial current - 39 
mA/cm2, a factor of 19 higher 
than Ir.  
OER Onset at 1 mA/cm2 on 
Ru occurs at 1.37 V while on 
Ir it occurs at 1.45 V. 
 
The 1 mA/cm2 @ 1.37 V on 
Ru-Pt/NSTF is ~50 mV better 
than on single crystal, which 
translates to more than ONE 
order of magnitude higher 
activity.   

At high potentials Ru is 
highly unstable.  
OER current at 1.55 V is 
much lower than at 1.45 V 

First of the three scans for the upper limit of 1.45 V, 1.55 V, and 1.65 V for 10 mg/cm2 of 
each of the three elements along with the uncoated Pt-NSTF 

2 mV/s scans 
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