

Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes

2012 DOE Hydrogen and Fuel Cells Program Review

Bryan Pivovar (PI)

May 15, 2012

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

Timeline

- •Start: July 2009
- •End: September 2013
- •% complete: ~60%

Budget (\$K)

DOE	Recipient	TOTAL
Cost	Cost	
Share	Share	
8384	868	9252

DOE funding	Budget (\$K)
FY09	1480
FY10	1203
FY11	2177
Planned FY12	1575
Planned FY13	1949

Barriers

- A. Durability (catalyst; MEA)
- B. Cost (catalyst; MEA)
- C. Performance (catalyst; MEA)

Partners – Principle Investigators

Oak Ridge National Laboratory (ORNL) – Kelly Perry Los Alamos National Laboratory (LANL) – Rod Borup University of Delaware (Delaware) – Yushan Yan State University of New York – Albany (CNSE) – Eric Eisenbraun Stanford University (Stanford) – Stacey Bent University of Tennessee (Tenn) – Tom Zawodzinski University of Texas-Austin (Texas) – Jeremy Meyers Nissan Technical Center North America* (NTCNA) – Kev Adjemian Cabot Fuel Cells* (Cabot) – Paolina Atanassova Tanaka Kikinzoku Kogyo* (TKK) – Fumiaki Ogura

*non-subcontracted collaborators

Review Period Objectives:

 Produce novel <u>extended thin film</u> <u>electrocatalyst structures</u> (ETFECS) with increased activity and durability, moving towards meeting all 2015 DOE catalyst targets simultaneously.

 Expand studies of electrode incorporation of ETFECS with highest potential to probe potential for meeting MEA Targets. Pursued studies with Pt Black as an unsupported surrogate, expanded to ETFECS, including carbon incorporation.

Table 3.4.13 Technical Targets: Electrocatalysts for Transportation Applications						
Characteristic	Unito	2011 Status	Targets			
	Units	2011 Status	2017	2020		
Platinum group metal total content (both electrodes) ^a	g / kW (rated)	0.19 ^b	0.125	0.125		
Platinum group metal (pgm) total loading ^a	mg PGM / cm ² electrode area	0.15 ^b	0.125	0.125		
Loss in initial catalytic activity ^c	% mass activity loss	48 ^b	<40	<40		
Electro catalyst support stability ^d	% mass activity loss	<10 ^b	<10	<10		
Mass activity ^e	A) mg Pt @ 900 mV _{iR-free}	0.24 ^b	0.44	0.44		

Table 3.4.14 Technical Targets: Membrane Electrode Assemblies					
Characteristic	Units	2011 Status ^a	2017 Targets	2020 Targets	
$Q/\Delta T_i^b$	kW/°C	-	1.45	1.45	
Cost ^c	\$ / kW	13 (without frame and gasket) 16 (including frame and gasket) ^d	9	7	
Durability with cycling	hours	9,000 ^e	5,000 ^f	5,000 ^f	
Performance @ 0.8 V ^g	mA / cm ²	160	300	300	
Performance @ rated power	mW / cm ²	845 ^h	1,000	1,000	

Approach ETFECS/Dispersed Electrodes

Synthesis of novel ETFECS (60%)

- Pt nanoparticles with continuity over 10's of nms or more. These materials have demonstrated enhanced specific activity and exceptional durability (3M, others).
- Screen multiple synthesis template (previous work) and Pt deposition (current year) techniques for relevance.
- Focus on increased Pt mass activity Low Pt ECAs (electrochemically accessible surface areas) have been common (~10m²/g_{Pt}), resulting in limited mass activity.
- Electrode studies involving ETFECS (35%) Effectively incorporate extended Pt catalysts into electrodes. Pursued studies with Pt Black as an unsupported surrogate, expanded to ETFECS, including carbon incorporation.

Supplemental modeling (5%) Modeling of catalyst particles, electrode structure and electrode performance.

2 nm cubooctanedron552%5 nm cubooctahedron1224%12.5 nm Pt coated(50 nm core) cylinder29~5%

NREL ETFECS

3M NSTF

http://www.hydrogen.energy.gov/pdfs/review04/fc_4_debe.pdf

Approach Project Milestones

Demonstration of 2 nd generation VACNTs, analogous to 3M's NSTF whiskers, based on low packing density and heights less than 2 microns.	12/10 Complete
DOE 2 nd Quarter "Joule" Milestone for 2011 Budget: Demonstrate continuous Pt nanostructured catalyst with specific activity > 720 μA / cm ² @ 900 mViR-free	3/11 Complete
Screening of at least 5 substrates and/or adhesion layers for their applicability to yield fast nucleation rates and form thin continuous films by ALD.	05/11 Complete
Go/no-go decision for down selection of carbon blacks included in electrode compositions containing extended surface Pt nanostructures based on ability to produce dispersed electrodes and electrochemical stability up to 1.5 V.	09/11 Complete
<i>DOE 1st Quarter "Joule" Milestone for 2012 Budget</i> : Maintain greater than 30 m ² /g Pt and 720 micro amps/cm ² (at 900 mV IR free) in scale-up of ETFECS synthesis to gram quantity.	12/11 Complete
Quantify impact in rotating disc electrode of potential cycling, and carbon and ionomer content on observed mass and specific activity and electrochemical surface area for best performing, high yield ETFECS.	5/12 Complete
Quantify durability of top performing ETFECS relative to commercial Pt/C in fuel cell accelerated stress test (AST).	09/12 On track

Pt Templates*/ Pt Deposition

Vapor Deposition (evaporation, PLD) sputtering (NREL)*

CVD (Tennessee)

ALD: atomic layer deposition (NREL, Stanford, CNSE)

Solution Deposition (electrochemical, spontaneous,

underpotential) spontaneous galvanic displacement (SGD) (NREL, UC-R/Delaware)

* See supplemental slides for more detail

Pt CVD nanotubes

no anneal

500°C anneal

750°C anneal

A wide array of different structures and compositions were obtained including nanoplates (NPs), nanowires (NWs), and nanotubes (NTs).

- Focus on increasing ECA, specific (mass) activity, and durability:
 - UC-R/Delaware: Multistep SGD (Pd, Pt, Au), template metal, stoichiometry
 - NREL*: Displacement ion, template metal, template morphology, solvent system, reactant delivery, post processing, stoichiometry, temperature, scale up.

CVD Pt NT Characterization (Tennessee, NREL)

Pt Deposition (ALD): Ozone (Stanford)

T= 300°C

- Growth rate in O₃ is larger than in air
- Almost no nucleation delay in Pt ALD with O₃
- Nucleation delay in O₂ system: 25 cycles

Pt Deposition (ALD): Ozone (Stanford/CNSE)

- Ozone has a tremendous impact on Pt deposition allowing significantly lower T deposition.
- TiO₂ coating shows better conformality at reduced thickness.
- Approach has been applied to nanostructures, next step electrochemical characterization.

After TiO₂/Pt ALD

Pt SGD: Scale Up (NREL)

Scale up of high performing SGD sample was performed to create increased catalyst quantities for characterization and electrochemical testing.
High ECA and mass activity achieved, significant

variability between batches.

				Pt Wt %			
	ECA	i _s ^{0.9V}	i _m ^{0.9V}	XRF	XRF	EDS	EDS
	(m²/g _{Pt})	(µA/cm² _{Pt})	(mA/mg _{Pt})	(NREL)	(LANL)	(NREL)	(ORNL)
Batch 1	38.6	1050	400	82	77.5	80-86	87-91
Batch 2	53.0	630	340	95	95	96-99	98-100
Batch 3	45.6	980	450	94	90	94-96	94-97
Batch 4	51.0	640	330	96	92	95-97	93-95
Average	47.0	820	390				

Batch 3

Pt SGD: Scale Up Characterization (ORNL, LANL)

HR TEM consistently shows materials made up of agglomerates of small crystals/grains.

Elemental maps/line scans show homogeneous composition throughout structures.

XRD fitting of catalysts show best fit with strain and preferred orientation, but are complicated and require further effort and technique refinement.

NATIONAL RENEWABLE ENERGY LABORATORY

Pt SGD: Multistep Pd, Pt, Au (UC-R/Delaware)

SEM and TEM images of a-b) PdNTs, c-d) PtPd 9, e-f) PtPd 14, g-h) PtPd 18, and i-j) PtNTs.

PtPd NTs and Au coated PtPd NTs investigated due to parallels with work of Adzic et al. and ability to be effectively investigated using SGD.

Specific activities can be very high, but mass activities low on a PGM basis (high on Pt basis).

Pd appears to be a poor choice for SGD catalyst support, Au may be promising for durability enhancements.

[1] J. Zhang, Y. Mo, M.B. Vukmirovic, R. Klie, K. Sasaki, R.R. Adzic *J. Phys. Chem. B* **2004**, 108, 10955.
[2] J. Zhang, K. Sasaki, E. Sutter, R.R. Adzic *Science* **2007**, 315, 220.

Pt Black in RDE w/Carbon (NREL)*

* See supplemental slides for more detail NATIONAL RENEWABLE ENERGY LABORATORY

Pt Black in RDE w/Carbon (NREL)

^{a)} M. Nesselberger et al. *JACS*, **133**, 17428-17433 (2011) ^{b)} B. Lim et al. *Science*, **324**, 1302-1305 (2009)

^{c)} H. A. Gasteiger et al. Applied Catalysis B: Environmental, 56, 9 (2005)

Pt Black in RDE w/Carbon (NREL)

RDE limiting current can be a useful indicator of insufficient disc coverage, but particularly in the case of unsupported catalysts, does not guarantee a good dispersion.

Specific activity measurements are intended to be assessments of the (intrinsic) activity of surface accessible Pt sites towards ORR.

Incorporation of C improves the Pt black dispersion and gives a "truer" intrinsic activity. However, we suspect even our numbers are below a "true" specific (intrinsic) activity.

Alternate carbons have shown similar effect. These results have strong implications on conventional thinking regarding extended surfaces and particle size effects.

Carbon Incorporation with Pt ETFECS (NREL)

Ink Formulation Effects on ETFECS (NREL)

NATIONAL RENEWABLE ENERGY LABORATORY

i_m^{0.9V}

mA/mg_{Pt}

N $i_m^{0.9V}$

N $i_s^{0.9V}$

 $(10 \ \mu L \ Nation)$

uA/cm²_{Pt}

NECA i_s^{0.9V}

Impact of Current Results

Collaborations

Key Investigators/Major Participants

National Renewable Energy Lab: Bryan Pivovar (PI), Shyam Kocha, Huyen Dinh, Lin Simpson, Chai Engtrakul, Arrelaine Dameron, Jason Zack, Tim Olson, KC Neverlin, Justin Bult, Brian Larsen, Niccolo Aieta, Jeremy Leong **Oak Ridge National Laboratory: Kelly Perry** Los Alamos National Laboratory: Rod Borup **University of Delaware: Yushan Yan** State University of New York – Albany (CNSE): Eric Eisenbraun **Stanford University: Stacey Bent** University of Tennessee: Tom Zawodzinski **University of Texas-Austin: Jeremy Meyers** Nissan Technical Center North America: Kev Adjemian **Cabot Fuel Cells: Paolina Atanassova** Tanaka Kikinzoku Kogyo: Fumiaki Ogura

Additional Collaborators: Stanford Linear Accelerator (SLAC): Mike Toney Johns Hopkins University: Jonah Ehrlebacher Colorado School of Mines: Svitlana Pylypenko, Ryan Richards

Future Work

• Pt deposition:

- CVD (Tennessee): Systematic studies involving wall thickness, annealing T, co deposition of metals with potential alloy benefits (Ni, Co)
- ALD (Stanford, CNSE, NREL): Further studies involving ozone with a focus on low temperature ALD, application of developed techniques to nanostructured substrates (including NSTF) and electrochemical characterization
- SGD (NREL, Delaware): further process optimization focusing on reproducibility and characterization of initial samples

• Electrode studies (NREL):

- Continued electrode studies of highest performing catalysts and role of carbon, including durability studies and catalyst utilization studies
- Expanded MEA fabrication and fuel cell testing of ETFECS

• Modeling *:

- Colloidal interactions to probe dispersions and inks of ETFECS (Tennessee)
- Rotating disc electrode (RDE) models to investigate specific activity, limiting current and electrochemical surface area (Texas)

* See supplemental slides for more detail

Summary

- <u>Relevance:</u> Focused on overcoming the most critical barriers for fuel cell MEA development.
- <u>Approach</u>: Developing extended surface Pt catalysts for their high mass activity and durability, and explore incorporating these structures into robust, high efficiency MEAs.
- <u>Accomplishments and Progress</u>: The project has synthesized many novel catalysts using materials, geometries, and approaches not previously demonstrated. Have reached poly crystalline Pt specific activity in nanostructures using CVD. Have demonstrated continuous ALD Pt coatings down to single nm thickness. Have met 2020 DOE mass activity target without alloying advantages, commonly produce extended surface catalysts with >40m²/g ECA. Have shown common perception of Pt Black and extended surfaces to be flawed. Have shown good cyclic durability, and elucidated the role of carbon in RDE.
- <u>Collaborations</u>: We have a diverse team of researchers from several institutions including 2 national labs, 5 universities, and 3 industry. We have added collaborators with specific strengths.
- <u>Proposed Future Research</u>: Focused on incorporating materials with improved mass activity and voltage cycling stability into highly performing electrodes. Seeking further improvements in mass activity targeting alloy advantages.

Technical Backup Slides

Template	Status	NREL (Cu NWs)
Metal (wires, tubes, etc) NREL, UC-R/Delaware	Cu nanowires synthesized routinely Ag nanowires have been synthesized, now commercially obtained Ag nanoplates synthesized	
Carbon Nanotubes (CNTs) NREL	Continuous thin films only obtained by sputtering Down selected work in synthesis to short, dispersed tubes.	10 KM we ^{al} BookyMountainLates
Metal oxides (CNSE, NREL)	Focus on TiO ₂ coated Si nanowires.	
Whiskers	3M NSTF	200 nm CNSE (Si/TiO ₂)

Discovery synthesis of cores/templates is complete. See last year's AMR Presentation for details.

NREL (Whiskers)

Accomplishments and Progress Sputtering (NREL)

 Sputtering has yielded targeted structures (thin Pt layers on substrates – NSTF(3M), CNTs(NREL))

Homogeneity of material and yield prevented meaningful electrochemical characterization.

Roll to roll processes (including thin mat fabrication or vertically aligned substrates and continuous sputtering) necessary to improve yield. While deemed to be of merit (including for commercial processes), sputtering is not being currently pursued (within project) due to cost of implementation, specialty equipment, and time - as well as promise of other approaches.

K. Perry (ORNL)

Examples of Reaction Variable Investigated for Pt SGD (NREL)

Temperature/ Reactant Delivery

280°C

200° C

93° C

22°C

Template Morphology

Displacement Extent (Stoichiometry)

Approach Electrode Studies (NREL)

Extended structure catalysts have not been studied in detail within electrodes.

Effectively incorporating ETFECS into electrodes is expected to be a significant challenge. Material availability and reproducibility has been an issue. We therefore began studies using commercially available Pt black as a representative high density unsupported electrocatalyst, and obtained critical results.

Studies primarily in RDE* and have investigated

- Carbon incorporation (several types)
- Ink composition (loadings, composition)
- Activity, ECA, Durability

3M NSTF Electrocatalyst Layer

Mark Debe, "Advanced Cathode Catalysts", 2009 DOE Hydrogen Program Review, May 18-22

Carbon investigated for

- Transport issues (mass, e-, H+)
- Catalyst Dispersion

*RT, 0.1 M HClO₄ 10-80 µg_{Pt}/cm²_{elec} 20mV/sec CVs 20mV/sec LSV ORR

Conventional Pt/C Electrocatalyst Layers

Approach Supplemental Modeling

Colloidal interaction parameters (Tennessee)

 Many of our catalyst particles have different interactions in inks and electrodes that are not well understood but critical for the successful integration of these materials into highly performing electrodes. Interactions of these particles can be modeled in terms of a Hamaker coefficient approach to better understand dispersion and interaction in solvents and electrodes from physically measurable properties including UV-Vis and IR spectra.

Modeling of RDE results for extended surface catalysts (Texas)

• Expand established porous electrode models into RDE geometries to explain the performance of unsupported catalysts observed as a function of composition and dispersion quality.

wavenumbers (1/cm)