

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

2012 DOE Hydrogen and Fuel Cells Program Review

Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading

Announcement No: DE-PS36-08GO98010

Topic: 1A

Pls: Nenad M. Markovic Vojislav R. Stamenkovic

Materials Science Division Argonne National Laboratory

> Project ID# FC008

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Project start: 9/2009
- Project end: 9/2012

<u>Budget</u>

- Total Project funding \$3.6M
 - DOE share: 80 %
 - Cost share: 20%
- Funding for FY11: \$1.2M
- Planned Funding for FY12: \$1.2M

Partners:

- Oak Ridge National Laboratory Karren More
- Jet Propulsion Laboratory C. Hays
- Brown University Shouheng Sun
- University of Pittsburgh Goufeng Wang
- 3M Company Radoslav Atanasoski
 <u>Project Lead:</u>
- Argonne National Laboratory

Relevance

<u>Objectives</u> The main focus of ongoing DOE Hydrogen and Fuel Cells Program is fundamental understanding of the oxygen reduction reaction on multimetallic systems of PtMN-alloys (M=Co,Ni; N=Fe, Mn, Cr, V, Ti, etc.) that will lead to the development of highly-efficient and durable *real-world nanosegregated Pt-skin catalysts with low-Pt content*

Original DOE Technical Targets

- Specific activity @0.9V_{iR-free}: 720 μA/cm²
- Mass activity @0.9V: 0.44 A/mg_{Pt}
- Electrochemical area loss: < 40%
- Catalyst support loss: < 30%
- PGM Total content: 0.2 g/kW
- PGM Total loading: 0.2 mg/cm²_{electrode}
- Cost*: \$ 30/kW_e
- Durability w/cycling (80°C): 5000 hrs

ANL Technical Targets

- Specific activity @ 0.9V_{iR-free} 2015 DOE target x 3
- Mass activity @ 0.9V_{iR-free} 2015 DOE target x 3
- Electrochemical area loss
 2015 DOE target
- PGM Total content < 0.1g/kW

Materials-by-design approach - developed by ANL to design, characterize, understand, synthesize/fabricate and test advanced nanosegregated multi-metallic nanoparticles and nanostructured thin metal films

Approach / Milestone

(Go-No Go Decision Met)

Milestone 1. Fundamental understanding (FY09, FY10, FY11, FY12) (Accomplished)

1.1	Resolved electronic/atomic structure and segregation profile	(85%)
1.2	Confirmed reaction mechanism of the ORR	(100%)
1.3	Improved specific and mass activity	(80%)

Milestone 2. Synthesis and characterization (FY10, FY11, FY12)

- 2.1 Physical methods: TM films (5-10 layers), nanoparticles (5-300 nm) (75%)
- 2.2 Established chemical methods: colloidal and impregnation synthesis (80%)
- 2.3 Characterization: Ex-situ (UHV, TEM) and in-situ (EXAFS, EC) (80%)
- 2.4 Theoretical modeling (DFT, MC) methods

Milestone 3. Fabrication and testing (FY11, FY12)

- 3.1 New PtM_1M_2 catalysts with higher activity and improved durability (85%)
- 3.2 Carbon support vs. nanostructured thin film catalysts
- 3.3 MEA testing (50 cm²) of the optimized catalysts
- 3.4 Scale up of the catalyst fabrication in lab environment

(85%)

(80%)

(35%)

(40%)

Relevant Prior Work

Pt-alloy catalysts with nanosegregated concentration profile exhibit the superior performance for the ORR

Maximization of activity by lowering the surface coverage of spectators

Bulk Pt

Nanostructured Pt film

De-alloyed PtM nanoparticle

Large PtM nanoparticle

- Prevent leaching of TM by addition of Pt layers without activity loss
- Addition of the elements that may hinder Pt disolution

Pt nanoparticle

PtM nanoparticle

Selected publications from our group

V.Stamenkovic, B.S.Mun, K.J.J.Mayrhofer, P.N.Ross, N.M.Markovic J. Am.Chem.Soc., 128(2006)8813

V.Stamenkovic, B.S.Mun, K.J.J.Mayrhofer, P.N.Ross, N.M.Markovic, J.Rossmeisl, J.Greeley, J.K. Norskov Angew.Chem.Int.Ed., 45(2006)2897

V.Stamenkovic, B.S.Mun, M. Arenz, K.J.J.Mayerhofer, C.Lucas, G.Wang, P.N.Ross, N.M.Markovic Nature Materials, 6(2007)241

> V.Stamenkovic, B.Flower, B.S.Mun, G.Wang, P.N.Ross, C.Lucas, N.M.Markovic Science, 315(2007)493

H.A. Gasteiger, N.M.Markovic Science, 3124(2009)48

Selected publications from FY09-11

C.Wang, D.vanderVliet, K.C.Chang, H.You, D.Strmcnik, J.A.Schlueter, N.M.Markovic, V.R.Stamenkovic **J. Phys. Chem. C., 113(2009)19365**

C.Wang, D.vanderVliet, K.C.Chang, N.M.Markovic, V.R.Stamenkovic Phys.Chem.Chem.Phys., 12(2010)6933, COVER PAGE Article

> C.Wang, M.Chi, G.Wang, D.vanderVliet, D.Li, K.L.More, H.Wang, J.A.Schluter, N.M.Markovic, V.R.Stamenkovic Adv. Funct. Mater. 21(2011)147, COVER PAGE Article

C.Wang, D.vanderVliet, K.L.More, N.J.Zaluzec, S.Peng, S.Sun, H.Daimon, G.Wang, J.Greeley, J.Pearson, A.P.Paulikas, G.Karapetrov, D.Strmenik, N.M.Markovic, V.R.Stamenkovic Nano Letters, 11(2011)919-928, COVER PAGE Article

Guiding principles:

[Fe/IN/C] novel

Technical Accomplishments FY09, FY10 and FY11: *Pt-alloy Nanocatalysts*

Colloidal solvo - thermal approach has been developed for monodispersed PtMN NPs with controlled size and composition

Efficient surfactant removal method does not change the catalyst properties

1º Particle size effect applies to Pt-bimetallic NPs

Specific Activity increases with particle size: 3 < 4.5 < 6 < 9nm

Mass Activity decreases with particle size

Optimal size particle size ~5nm

2º Temperature induced segregation in Pt-bimetallic NPs

Optimized annealing temperature 400-500°C

<u>3º Surface chemistry of homogeneous Pt-bimetallic NPs</u>

Dissolution of non Pt surface atoms leads to Pt-skeleton formation

4º Composition effect in Pt-bimetallic NPs

Optimal composition of Pt-bimetallic NPs is PtM

Technical Accomplishments FY09, FY10 and FY11: Pt-alloy Nanocatalysts

Au core

PtFe shell

PtMN

Ternary NPs

HSA

carbon

5° Pt-bimetallic catalysts with mutilayered Pt-skin surfaces

Synthesized PtNi NPs have homogeneous distribution of Pt, Ni

3-4ML of Pt-skeleton surfaces for PtNi acid leached NPs

Multilayered Pt-skin surfaces confirmed for PtNi annealed NPs

RDE after 4K cycles @60°C (0.6-1.05V vs. RHE): 8-fold specific and 10-fold mass activity improvements over Pt/C

6° Multimetallic NPs can further improve activity and durability

activities vs. Pt and Pt₃M alloys

Technical Accomplishments: Surfactant Removal from NPs

Effectiveness of Surfactant Removal by Different Treatments

Annealing in oxygen atmosphere is the most efficient procedure for the capping agent removal

(b) ^{0.0}

Annealing in oxygen atmosphere does not induce agglomeration and/or sintering of NPs

320 cm²/mg_{Pt}

280

240

200

200 200 Specific Su 160

ce A

Technical Accomplishments: *Adsorption properties of Pt-skin surfaces*

Pt-skin surfaces: Important to perform evaluation of electrochemically active surface area

Pt-skin surfaces on well-defined single crystal surfaces

Technical Accomplishments: Adsorption properties of Pt-skin surfaces

Feasibility studies of nanosegregated profile in ternary alloys

Monte Carlo Simulation for Segregation on Pt₃MN Extended Surfaces

BULK

BULK

Equilibrium structures of the outermost three layers of the extended (a) (111) and (b) (100) surfaces of $Pt_{75}Ni_{12.5}Co_{12.5}$ alloy after annealing at 500°C

Feasibility studies to induce nanosegregated profile in ternary alloys

Surface Segregation on Pt₃MN Thin Film Extended Surfaces

ORR Activity Evaluation in Ternary Alloys

Argonne

Feasibility studies of nanosegregated profile in ternary alloy NPs

Monte Carlo Simulation for Segregation on Pt₃MN Nanoscale Surfaces

(A) Surface composition of the as-synthesized ternary alloy cubo-octahedral NP

(B) External view and (C) Cross-section of the equilibrium structure of the annealed cubo-octahedral

Technical Accomplishments: Synthesis of Pt Ternary Alloy NPs

Synthesis of homogeneous and monodisperse ternary alloy nanoparticles has been accomplished

Technical Accomplishments: Characterization of Pt Ternary Alloy NPs

Electrochemical evaluation of Pt₃MN NPs by RDE

solvothermal synthesis was used for comparison to ternary alloy catalysts

Improvement factor > 4 was achieved for specific and mass activities of Pt₃NiCo/C

Technical Accomplishments: Catalyst of Choice

PtNi Catalyst with Multilayered Pt-skin Surfaces

TEM: PtNi-Skin NPs have uniform particle size distribution with unique nanosegregated concentration profile TEM/XRD: Content of Ni is maximized and allows formation of the multilayered Pt-skin by leaching/annealing RDE: PtNi-Skin catalyst exhibits superior catalytic performance for the ORR and is highly durable system *In-Situ* XANES: Subsurface Ni is well protected by less oxophilic multilayered Pt-skin during potential cycling

Technical Accomplishments: Catalyst of Choice

MEA Studies: PtNi Catalyst with Multilayered Pt-skin Surfaces

Durability Studies of PtNi-skin Catalysts with GM: F. Wagner, E. Thompson and J. Ziegelbauer

MEA

2	0.0	m	eml	ora	ne	010	0	0.0
2	0	OIO	0) (0	(010	0
		bip	olar	pl	ate	s		

50 cm², 25 μ DuPont NRE membrane, 80°C, 32% RH, 150kPa_{abs}, H₂ – Air, 20K cycles from 0.6-0.95V

MEA : 20,000 potential cycles, 0.6 – 0.95 V vs. RHE, at 80°C							
Sample	ECSA (m²/g _{Pt})	r.f. (cm _{Pt} ² /cm _{geo} ²)	M.A. (A/mg _{Pt})	S.A. (µA/mg _{Pt})	% loss in M.A.		
PtNi/C (1)	41	53.3	0.327	794	120/		
PtNi/C (2)	39	_	0.287	700	12%0		

Ex-Situ EXAFS in MEA: From both Ni and Pt edges negligible change occurred to the PtNi/C catalyst after 20K cycles, which confirms high stability of the multilayered Pt-skin near-surface formation that is capable of preserving the nanostructure during the electrochemical reactions

Technical Accomplishments: Catalyst of Choice

MEA Studies: PtNi Catalyst with Multilayered Pt-skin Surfaces

Durability Studies of PtNi-skin Catalysts with GM: F. Wagner, E. Thompson and J. Ziegelbauer

Ex-Situ EXAFS in MEA: particles posses a Ni concentration gradient; most Ni is concentrated in the center of the particle and gradually depletes within the Pt-skin region (2 ~ 3 atomic layers)

The shift in the Ni-Ni interatomic distances arises because of the bulk-averaging nature of XAFS

Initially, the Ni-rich centers of the particles (with $R_{Ni-Ni} < 2.602$ Å) are averaged with the R_{Ni-Ni} values from Ni atoms closer to the surface

The "outer layer" Ni atoms are in a Pt-rich PtNi alloy environment where the interatomic distances are longer due to the presence of larger diameter Pt atoms in the lattice

After extensive voltage cycling, the remaining outermost Ni (within ~3 atomic layers from the surface) is removed, revealing the Ni-rich PtNi core in the center

The compositions of the "cores" of the particles are relatively resistant to change, due to the protection by the Pt-skin surface

The altered surface electronic and adsorption properties were preserved after the cycling

Summary

Pt-alloy NPs supported on HSA carbon:

Efficient removal of the capping agents from Pt-alloy NPs synthesized by colloidal solvo-thermal approach

Established methodology for determination of the electrochemically active surface area ECSA for nanosegregated catalysts with Pt-skin surfaces:

Ratio >1 between integrated charge from CO stripping curve and H_{upd} region can be used as indication for the formation of Pt-skin surfaces

Evaluation of PtMN systems

Л

Nanosegregated concentration profile can be induced in Pt_3MN systems (TEM, RDE, EXAFS, XRD, DFT, MC)

Specific and mass activity of ternary alloy NPs can be improved by 4-fold for Pt_3NiCo system (RDE in 0.1M $HCIO_4$ @ 0.95V vs. RHE: SA~ 0.6mA/cm² and MA~0.2A/mg_{Pt}, which is exceeds DOE target by factor of 3) Pt₃MN are more active than Pt₃M catalysts

Stability of Pt₃M and Pt₃MN is comparable and it leads to ~30% of losses in electrochemical active surface area

 $\mathbf{\Gamma}$

PtNi with multilayered skin is the catalyst of choice with superior activity and durability properties. <u>After potential cycling</u> the improvements factors in specific and mass activities are 8 and 10 respectively over Pt/C.

EXAFS confirmed that structural parameters did not change by potential cycling

Surface area loss is ~12%, which was revealed from both RDE and MEA studies

Future Work

FY 2012

- Final tailoring of the compositional properties that are controlling catalytic activity of PtMN systems
- Synthesis and characterization of nanosegregated PtNiCo system with higher content of TM
- Optimization of the nanosegregated catalyst of choice
- Evaluation of nanosegregated PtMN thin film nanoscale catalysts with tailored structure (!!!)
- Electrochemical evaluation in RDE and MEA (ANL, 3M)
- Scaling up of solvo-thermal approach to produce larger quantities of the catalyst of choice

FY 2013

- Activity/stability evaluation and optimization of MEA protocols in 3M, GM, ANL
- Achieving full capacity for scaling up of chemical synthesis of NPs supported on HSA carbon
- Alternative approaches for fabrication of thin-film nanoscale catalysts with ultra low PM content

Collaborations

SUB-CONTRACTORS

- Oak Ridge National Laboratory HRTEM
- Jet Propulsion Laboratory Alloying and Combinatorial Approach
- Brown University Chemical Synthesis
- University of Pittsburgh (ex-Indiana University Purdue) Theoretical Modeling
- **3M** Testing

COLLABORATORS

- Argonne National Laboratory Nanoscale fabrication and DFT (CNM)
- **GM** Technology transfer

