This presentation does not contain any proprietary, confidential, or otherwise restricted information

2012 DOE Hydrogen Program Annual Merit Review

SPIRE

Sustained Power Intensity with Reduced Electrocatalyst

(aka: Durability of Low Pt Fuel Cells Operating at High Power Density)

Scott Blanchet (PI) Presenter: Olga Polevaya (PM) Nuvera Fuel Cells 5/16/2012 FC014

2012 DOE Hydrogen Program Annual Merit Review – May 14-18, 2012

Overview

Timeline

- Kick-Off: December, 2009
- Nuvera and DOE agreed on extending to 4-year program ending 09/30/2013
- 70% Complete (03/30/2012)

Budget

- \$5.642M Total Project
 - \$3.875M DOE Share (Includes \$0.975M for National Labs)
 - \$1.767M Cost Share
- DOE FY11 Funding: \$584K
- DOE Planned FY12: \$411K

Barriers

- Barriers addressed
 - Stack Durability with Cycling: target: 5000hrs (2015)
 - Stack Cost: target: \$15/kW (2015)

Partners

Relevance: Objective and Deliverables

The technical objective is to identify and model PEMFC durability factors associated with low-Pt MEAs operating at high(>1W/cm²) power density.

The key deliverable of this program is a durability model experimentally validated over a range of stack technologies operating at high power

2012 DOE Hydrogen Program Annual Merit Review – May 14-18, 2012

Technical Approach – Experimental Design

Architectures selected to maximize applicability across industry.

Test Protocol	Cathode Pt loading mg _{Pt} .cm ⁻²		Description		
	0.15	0.4			
Potential cycle tests					
B1 AST	\checkmark	\checkmark	Triangle wave cycle, 0.6 - 1 V, 50 mV.s ⁻¹ scan rate		
B1*AST	\checkmark		Same as B1 but the cell potential varies between 0.583 and 0.883 V		
NST1A	\checkmark	\checkmark	Triangle wave cycle, 0.025 - 2 A/cm ² , ~50 mV.s ⁻¹ scan rate, 30,000 cycles		
NST3	\checkmark	\checkmark	Drive cycle N3A-2 covering 0.586 – 0.886 V (10-cell short stack, 250 cm²/cell)		
Humidity cycle tests.					
B4 AST	55 days long & inconclusive: cancelled (RIT, SCOF)				
NST1B	Equivalent to B4 with the current draw : cancelled				
NST2			FCTT recommended combined load & RH cycle		

Technical Progress – Milestones and Go/no go

Milestone	Due date	Status
1. Model Block diagram published.	FY2010, Q3	Complete
2. Single Cell Open Flowfield (SCOF) hardware validated and delivered to LANL.	FY2011, Q1	Complete
3. Comparative data for Single Cell Land Channel (SCLC) and SCOF on AST protocol is published	FY2012, Q1	Complete
<u>GNG decision:</u> Demonstrate durability results (voltage decay, diagnostic and post-test measures) in SCOF are consistent with full- area short stack testing using baseline operating conditions and materials.	FY2012, Q1	Passed Go at the Program Review
 Model correlations to full-area test results published. 	FY2012, Q4	In progress
5. Validated model and data set published and available to industry	FY2013, Q4	Not started

Technical Progress – Durability Model Development

Developed Pt dissolution model for 0.15 mg-Pt(c)/cm² MEA

Technical Progress – AST: Effect of Pt loading

SCLC

Technical Progress- SCOF validation by LANL

- LANL performance of high Pt MEAs in SCOF matched with Nuvera data.
- Performance of low Pt MEAs in SCOF and SCLC are similar at high pressure conditions.
- Performance of Low Pt MEA in SCOF is superior to SCLC at low pressure conditions.

Technical Progress- Milestone 3: Benchmarking SCOF to Land-Channel cell in B1 AST

os Alamos

Consistency between SCOF and Orion stack in

- BOL polarization
- Temperature & pressure gradients along the cells

- Oxygen pressure at catalyst

demonstrated on 0.45- and 0.2 mg Pt/cm² MEAs

2012 DOE Hydrogen Program Annual Merit Review – May 14-18, 2012

CELLS

Technical Progress – Dynamic response in NST3

10-cell stacks , 250-cm² cell active area, 2A/cm² RCD

Dynamic response to the load request is slower with ageing and attributed to changes in both cathode ECSA/Pt oxide coverage and increase of diffusion resistance.

12

Stack

B7/

Technical Progress – Effect of Pt loading in NST3

- Higher activation losses in 0.2mg_{Pt}.cm⁻² cell, faster increase with ageing. 1.
- Thicker catalyst in 0.45 mg_{Pt}.cm⁻² cell has higher CCL pore diffusion losses. 2.
- The CCL ionomer in 0.2 mg_{Pt}.cm⁻² cell shows faster increase of diffusion losses. 3.

Technical Progress – Effect of Start-Stops in NST3

Significant carbon corrosion observed with un-mitigated start-stops:

- 46% loss in ECSA after 1150 h (27% after 980h mitigated start-stops).
- Increased CCL pore and ionomer diffusion losses due to carbon corrosion.

Technical Progress – TEM of MEAs past NST3

CELL

Technical Progress - Platinum loss to membrane

Collaborations

- Nuvera Fuel Cells (Industry) prime contractor
 - Program management,
 - SCOF Development, validation and high power NSTs,
 - Stack NSTs.
- Los Alamos National Lab (Federal) subcontractor
 - Single cell AST/NST testing,
 - Post-test characterization.
- Argonne National Lab (Federal) subcontractor
 - Developer of Platinum stability and fuel cell durability model.
 - Lead data analysis and post-processing for LANL and Nuvera.
- Oak Ridge National Lab (Federal) subcontractor
 - Post-test characterization.
- W.L. Gore & Associates (Industry) lead MEA developer
- Durability Work Group Borup/Myers lead

Proposed Future Work

FY2012-2013

- Refocus test campaign on NSTs in SCOF at Nuvera and RIT cell at LANL on low Pt MEAs.
- Develop Platinum ion transport model and integrate with the Platinum dissolution block into complete durability model.
- Validate model throughout NSTs and conduct model sensitivity study.
- Disseminate durability model to the industry.

Summary

- SCOF architecture successfully validated in ASTs and NSTs.
- MEA durability proven identical in SCOF and Orion stack under load cycle protocols.
- Benchmarking of Serpentine and Open flowfields completed.
- Degradation of Low Pt MEAs elevated with current density is attributed to mass transport within catalyst layer.
- High RCD does not accelerate the degradation of high Pt loaded MEAs.
- Good progress in durability model development.

2012 DOE Hydrogen Program Annual Merit Review – May 14-18, 2012

Technical Back-Up Slides

Effect of Potential Limits in AST

B1 Protocol: 0.6 – 1 V triangle wave, 50 mV/s scan rate

B1* Protocol: 0.582 – 0.886 V triangle wave, 50 mV/s scan rate

Best-of-class Durability NST3

RCD 2A/cm²

2012 DOE Hydrogen Program Annual Merit Revi 🗾 Nuvera

Technical Progress: Catalyst stability

Spire activities are synchronized with other DOE durability programs to avoid duplication of effort

Data Analysis Methodology

- 1. ORR kinetic constants from VIR at low current densities
- 2. Mass transfer overpotentials from VIR and kinetic losses
- 3. Analysis of EIS data for breakdown of mass transfer overpotentials

- R₂: Resistance due to ORR kinetics and mass transfer in catalyst layer (CCL)
- R₃: Resistance due to mass transfer in flow-field, GDL and MPL
- Multi-nodal reaction-diffusion model to determine k_g, k_c, k_i from R₂, R₃
 - k_g : O₂ diffusion across flow-field, GDL and MPL
 - k_c : O₂ diffusion in CCL micropores
 - k_i : O₂ diffusion to catalyst surface in CCL ionomer
- Supplemental helox data: k_g and k_c are higher than in air but not k_i

