Improved Accelerated Stress Tests Based on FCV Data

Timothy Patterson, Tom Skiba

UTC POWER

May 15, 2012

This presentation does not contain any proprietary, confidential, or otherwise restricted information

FC015

Overview

<u>Timeline</u>

- Start Date: December 2009
- Finish Date: May 2012
- Status: 90% Complete

Barriers

(from the Multi-Year Research, Development and Demonstration Plan)

❑ >5,000 hr stack durability w/ less than 10% performance decay

ASTs used to avoid costly durability testing
 UTC bus durability target of 15,000 hours

<u>Budget</u>

Total funding: \$3.847M

- DOE: \$3.078M (includes \$617K to the National Labs – ORNL & LANL)
- Cost share: \$769K

Total DOE Funds Received: \$3.078M FY11 DOE Funding: \$884K

Partners

Relevance

Program Objectives	Current Gaps	Objectives
Comparison of conditions & materials in bus field operation vs. DOE ASTs	DOE ASTs not calibrated with real world degradation	 Task 1 - Analyze performance data and characterize degraded materials from 2850 hr stacks in bus service Task 2 - Analyze data and degraded materials run in DOE ASTs (same as in bus stacks)
Develop acceleration factors for DOE AST mechanisms → recommend modifications	DOE ASTs may over- or under-accelerate mechanisms → inadequate material selections	 Task 3 - Correlate results for all current DOE ASTs: 1) PGM decay 2) Carbon corrosion 3) Membrane mechanical 4) Membrane chemical
Identify life-limiting mechanisms not addressed by DOE ASTs → recommend new ASTs	Validated GDL specific AST; Validated integrated membrane mechanical/chemical AST;	Task 4 – Prepare and Validate New/Modified AST Protocols

Collaborations

Partners

United Technology Research Center (Industry)

- Membrane hydration strain modeling
- Material characterization

Los Alamos National Laboratory (Federal)

- AST development
- Subscale fuel cell and electrochemical testing
- Materials Characterization

Oak Ridge National Laboratory (Federal)

Material characterization

Approach

Task	Project Time Period (Quarters)											
	Q1	Q2	Q3	Q4	Q 5	Q 6	Q7	Q 8	Q 9	Q10		
Task 1.0 Real World Degradation												 Task Duration
Task 2.0 Lab World Degradation												Task Completion Milestone
Task 3.0 Real World – Lab World Correlation												Go/No Go Gate
Task 4.0 Preparation and Validation of New/Modified AST Protocols												Go/No Go & Budget Gate
Task 5.0 Project Management and Modeling												

Task	Progress	Status
1.0. Real world degradation	 Completed bus operating cycle analysis Completed characterization of field-operated bus stack (2850 h) for all 4 decay mechanisms covered by current ASTs 	100% complete
2.0. Lab world degradation	 Completed all 4 DOE AST on the same materials as the bus stack Post-mortem characterization completed 	100% complete
Go / No Go Gate 1	 Correlate all observed degradation to field operating conditions → sufficient degradation in field conditions 	100% complete
3.0. Real – Lab correlation	 Acceleration factors determined for all existing DOE mechanisms New degradation mode found and accelerated test proposed New breadboard unit developed and running accelerated life test (ALT) 	100% complete
Go/No Go Gate 2	 Gap in DOE ASTs identified for isolation of GDL oxidation effects Modeling & DMA used to understand chem. + mech. membrane degradation 	100% complete
4.0 Preparation and Validation of New/ Modified AST Protocols	 Integrated membrane chemical/mechanical AST completed Ex-situ GDL oxidation AST development underway 	90% complete
5.0 Project Management and Modeling	•Further development of membrane hydration strain model completed	100% complete

Approach

A United Technologies Company

Approach Real world versus AST

	Task	∖ 1 – Real-World	I	Task 2 – Lab-World						
Decay Mechanism	Real-World Cycle	Real-World Diagnostics	Real-World Post-test Analysis	Lab AST Cycle	Lab AST Diagnostics	Lab AST Post- test Analysis				
Pt Dissolution/ sintering	H ₂ /Air 63°C 100%RH 100 cycles/h 0.6 – 0.9 V	Performance ΔV @ 0.2A/cm ² ECA loss	SEM XRD HRTEM	H ₂ /N ₂ 80°C 100%RH 112.5 cycles/h 0.6 – 1.0 V _{nhe}	Performance ∆V @ 0.2A/cm ² Mass activity & ECA loss	SEM XRD HRTEM				
Carbon Corrosion	H ₂ / Air fronts during start-up (25 C) and shutdown (65 C) (mitigated); Air- Air Time	Performance ΔV @1.0 A/cm ²	SEM HRTEM EELS	H ₂ /N ₂ 80°C 100%RH 1.2 V _{nhe}	Performance $\Delta V@1.5A/cm^2$ CO_2 release Mass activity loss	SEM HRTEM EELS				
Membrane Mechanical	H₂/Air 63°C ∆RH: 40-50% 100 cycles/h	Crossover diagnostics (RPS)	SEM, DMA (BOL & EOL)	Air/Air 80°C ∆RH: 0→100% 15 cycles/h	H ₂ cross-over Shorting	SEM, DMA (BOL & EOL)				
Membrane Chemical	H ₂ /Air 63°C 100%RH V _{idle} for ~30% load time	Crossover diagnostics (RPS)	SEM, DMA (BOL & EOL)	H₂/air 90°C 30%RH OCV	FER H ₂ cross-over Shorting	SEM, DMA (BOL & EOL)				

UTC fleet data

A United Technologies Company

Carbon corrosion AST(Air-air cycling)

A United Technologies Company

Carbon corrosion AST(1.2 V hold @ 80°C)

1.2 V hold at 80°C is a 50X accelerated test

2008 fleet leader GDL (same as 2011 fleet leader GDL) shows 2X improvement in carbon corrosion AST over 2006 fleet leader; In field, improvement was greater than 7X

Power

A United Technologies Company

Coolant inlet temperature (°C)	80°C
Anode Reactant	4% H ₂ in N ₂
Cathode Reactant	N ₂
Applied Voltage	1.151 V vs Ref (1.2 V vs H ₂)

Real world membrane mechanical damage

Water submerge test showing air inlet

In fleet operation, membrane failed after 2800 hours at air inlet due to membrane hydration strain cycling induced by load-flow cycling

Surface image

Cross-section

SEM micrographs confirming membrane failure at the air inlet

Failure mechanism of 2008 fleet leader

Model of Channel R.H. during load cycling

T.T. Aindow and J. O'Neill, Journal of Power Sources, Volume 196, Issue 8, 15 April 2011, Pages 3851-3854

Stress during R.H. cycling at constant strain

S-N curve for 2008 fleet leader

Modified membrane mechanical damage AST

Coolant inlet temperature (°C)	80°C						
Anode reactants	Hydrogen, 80% utilization(SR = 1.25)						
Cathode reactants	Air, 60% utilization (SR = 1.66)						
Load cycle	Time Current density						
	20 sec 10						
	15 sec 800 or 1500 mA/cm ²						
OCV Pressure Response	Measure cell voltage difference at open circuit when the anode to cathode cross- pressure is changed from 0 kPa to 15 kPa						

Membrane mechanical AST resulted in acceleration factor of ~20X vs. fleet operation with same failure mode

Implementation of more durable membrane enabled fleet durability to increase from 2800 hours to 10,000 hours

2008 Fleet Leader, 2800 hours

Lab AST

Effect of operating conditions

Increasing temperature from 60 to 80°C decreased lifetime by factor of 4

Doubling current density from 800 mA/cm² to 1500 mA/cm² decreased lifetime by 20%

Membrane hydration-induced stress model

Membrane Mechanical Decay Model:

Using DMA as rapid membrane screening tool

Sample: MEA Conditions: Temperature: Variable 90%RH 10Hz

Sampling configuration:

Longitudinal (Fuel In)

Using DMA as rapid membrane screening tool

Load cycling $\rightarrow \Delta RH \rightarrow$ dimensional change \rightarrow stress cycling

Motivation:

RH cycling critical to UTC cell design

No established ex-situ methodology exist for evaluating advanced membrane or operation conditions

No established ex-situ methodology exist for evaluating degraded membranes

Using DMA as rapid membrane screening tool

100

90

80

70

60

50

40

30

20

10

0

4000

7000

Relative Humidity (%)

S-N Curves of MEA

Anisotropy in MEA

Fatigue resistance (cycles-to-failure) in the air-in direction(transverse) higher than that in the fuel-in (longitudinal) direction (~4X)

10000

13000

16000

Time (sec)

19000

Correlation of ΔRH with stress Stress response isotropic

6.0

5.0

4.0

2.0

1.0

0.0

-1.0

28000

60 °C:

25000

22000

Stress (MPa 3.0

Fixed Strain RH Cycling

Using DMA as rapid membrane screening tool

S-N curves $\rightarrow \Delta RH$ -N curves \rightarrow Lifetime Estimate

Using DMA as rapid membrane screening tool

Membrane in 2011 Fleet Leader was 30X better than 2008 Fleet Leader in DMA testing

2011 Fleet Leader expected to last ~100,000 hours in absence of chemical degradation

Good screening tool for membrane reinforcement, but cannot replace accelerated testing since it doesn't address chemical degradation

Using DMA as rapid membrane screening tool

Using DMA to estimate remaining life

10.0 9.0 Baseline 8.0 Degraded Maximum Stress (MPa) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 60 °C; 90% R.H. 1.0 0.0 1.00E+02 1.00E+03 100F+04 1.00E+05 1.00E+06 1.00E+07 Cycles to Failure

MEA subjected to accelerated stress test for membrane chemical degradation (i.e. OCV) shows severe crossover after ~150h.

DMA testing on AST tested (~150h OCV) MEA shows severe reduction in structural Estimated life remaining <5%

DMA testing (cycles-to-failure) used as postmortem analysis

Using DMA to estimate remaining life

DMA results obtained from various areas in the planform

Cycles-to-failure can be used to estimate 'remaining life'

DMA data can be used to estimate remaining life of MEAs

Accelerated Life Test (ALT) rig

ALT failed after approximately 1200 hours, or 2X faster than fleet

At same temperature(70 °C), cell running membrane AST protocol failed in 20% of time of ALT, which is running a similar load profile to the fleet; ALT load cycle protocol, based on fleet protocols, has fewer prolonged high current density holds than single cell AST

nwer

A United Technologies Company

A United Technologies Company

Carbon corrosion AST(1.2 V hold @ 80°C)

Summary of real world to AST comparisons

Mechanism	AST	Comparison	AST (hrs)		Fleet Time	Failure e(hrs)	ovement tor	et ent Factor	on Factor
			Baseline	Improved	Baseline	Improved	AST Impr Fac	Fle	Accelerat
GDL carbon corrosion	Air-air cycling	2006 vs. 2008 Fleet Leader	150	550	1250	9800	>3.6X	>8 X	8X
Catalyst layer carbon corrosion	DOE Carbon Corrosion AST	2006,2007 vs 2008, 2011 Fleet Leader	10	20	1500	>11,00 0	2X	>7X	>150- 500X
Membrane chemical/ mechanical failure	80 °C flow/load cycling	2008 vs. 2011 Fleet Leader	140	>2100	2800	9800	>15X	>3.6	20X
Platinum loss	PGM AST	N/A	7 mV in 200 hours	-	15 mV in 2800 hours	-	N/A	N/A	6.5X

PROJECT SUMMARY

Relevance: Development of validated accelerated test protocols for all identified failure modes will decrease need for expensive, time consuming durability testing

<u>Approach:</u> Perform fuel cell diagnostics and materials characterization on real world samples and samples that have been subjected to accelerated test protocols; Identify any failure modes not being addressed by current DOE AST protocols and develop and validate new ASTs for those failure modes;

Technical Accomplishments and Progress:

-Completed characterization of field-operated bus stack (2850 h) for all 4 decay mechanisms covered by current ASTs;

-Correlated membrane and GDL AST results to all field failures

-Completed accelerated life test of breadboard unit (ALT)

-DMA used to estimate lifetime, effect of temperature, and estimate remaining life of tested samples

<u>Technology Transfer/Collaborations:</u> Active partnerships with LANL and ORNL in AST validation, development of new ASTs, and material characterization. Technology transfer through team meetings, presentations and publications.

Proposed Future Research: Develop validated ex-situ GDL oxidation test; Validate use of DMA as lifetime prediction tool; Run second ALT rig at higher temperature using latest material set

