#### Fuel Cell Transportation Cost Analysis, Preliminary Results



Brian D. James Strategic Analysis, Inc. 17 May 2012

#### **Project ID #FC018**

This presentation does not contain any proprietary, confidential, or otherwise restricted information



# **Overview**

## Timeline

- Auto/Stationary FC Cost Analysis
- Project start date: 7/8/10
- Project end date: 9/7/12
- Percent completion: 80%
- Transportation FC Cost Analysis
  - Project start date: 11/30/12
  - Project end date: 9/13/16 (all 5 Budget Periods)
  - Percent complete: 3% (of total budget)

## Budget

- Auto/Stationary FC Cost Analysis
  - Total Project Funding: \$746k
- Transportation FC Cost Analysis
  - Total project funding: \$1M over 5 years
    - FY12: \$166K/\$68k for SA/Labs

#### **Barriers**

- System Cost:
  - Realistic, process-based system costs
  - Need for realistic values for current and future cost targets
- Demonstrates impact of technical targets
  & barriers on system cost:
  - Balance of plant components
  - Materials of construction
  - System size and capacity (weight and volume)

#### **Partners**

- Argonne National Laboratory
- National Renewable Energy Laboratory



## **Relevance: Objectives**

#### **Project Goals:**

- Process-based cost analysis of stationary, light duty automotive, and bus fuel cell power systems.
- To be used to used to inform and guide industry R&D and DOE targets.
- Sensitivity studies
  - Used to determine system cost effects of reaching specific technical component targets.

#### Five-year project, annually renewed (Transportation Cost Analysis)

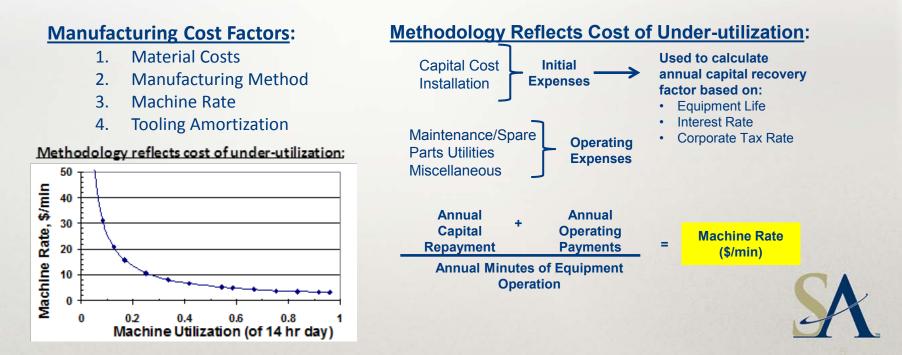
- Analyze systems of interest identified by ANL.
- Allows researchers cost impact updates throughout year and feedback on technical advances or proposed strategies.
- Identify most fruitful research paths to cost reduction
  - System technology and design parameters
  - System size and capacity
  - Balance of plant components
  - Materials of construction



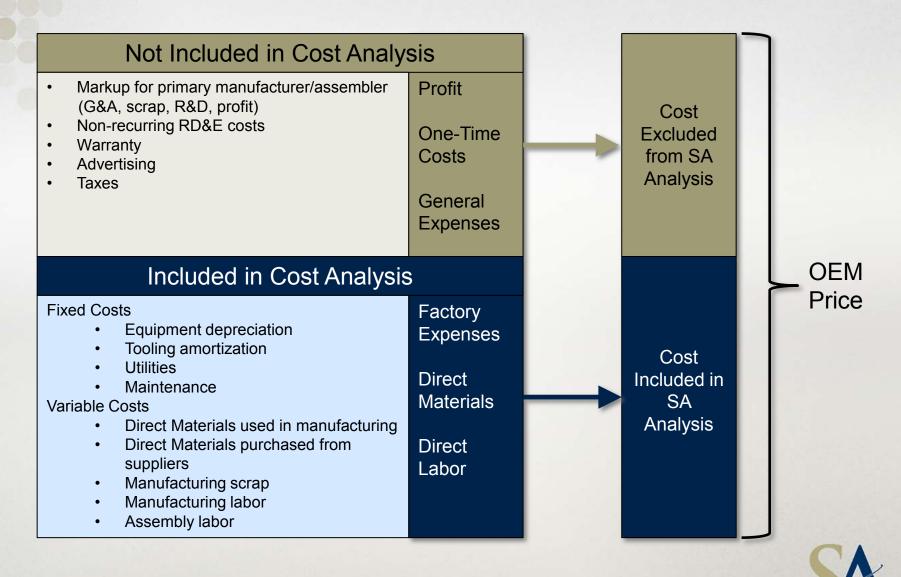
## **Relevance: Systems of Interest**

#### Stationary

- System sizes: 1 kW, 5 kW, 25 kW, 100 kW
- Annual manufacturing rates: 100, 1k, 10k, 50k
- Fuel Cell Technologies: Low Temp PEM, High Temp PEM, Solid Oxide
- Light duty automotive
  - 80 kW system size
  - Annual manufacturing rates: 1k, 10k, 30k, 80k, 130k, 500k
- Buses
  - 150 kW system size
  - Annual manufacturing rates: 1k, 10k, 30k, 80k, 130k, 500k
- Analyses will be updated annually to reflect altered performance/assumptions/design.




## **Approach: SA's DFMA<sup>®</sup> - Style Costing Methodology**


#### What is DFMA?

- DFMA<sup>®</sup> (Design for Manufacturing & Assembly) is a registered trademark of Boothroyd-Dewhurst, Inc.
  - Used by hundreds of companies world-wide
  - Basis of Ford Motor Co. design/costing method for the past 20+ years
- SA practices are a blend of:
  - "Textbook" DFMA<sup>®</sup>, industry standards and practices, DFMA<sup>®</sup> software, innovation, and practicality

#### Estimated Cost = (Material Cost + Processing Cost + Assembly Cost) x Markup Factor



## **Approach: Cost Factors Included in Estimates**

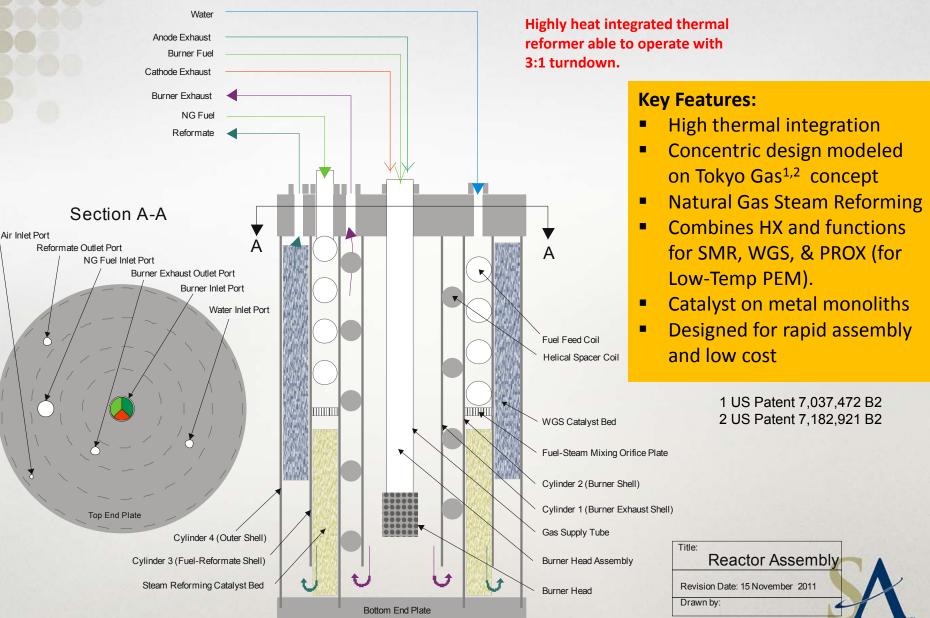


## **Approach: Basic Cost Modeling Work Flow**

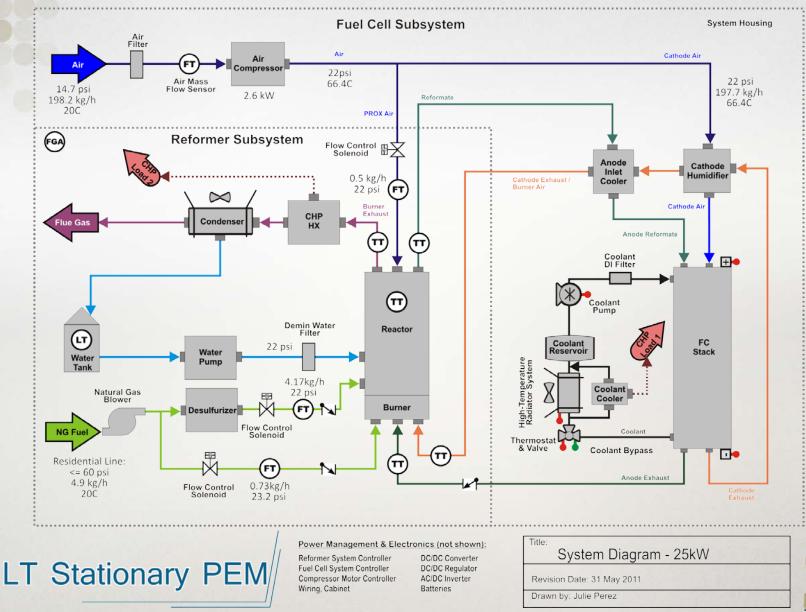
- 1. Obtain or create system design for technology of interest
  - ANL or Industry partner provides key parameters, system diagram
- 2. Develop physical embodiment of system design
  - Materials, scaling, dimensions, design embodiment
  - ANL/Industry partner may provide design details
- 3. Investigate & conceptually model the manufacturing process train for system production
  - Manufacturing methods based on SA experience, industry input, analogy to similar products
- 4. Vary key parameters to obtain sensitivity data for modeled technology
- 5. Share results with ANL, NREL, DOE, and Industry to obtain feedback/improvements
- 6. Modify cost analysis as needed

## **Accomplishments: Stationary FC Systems**

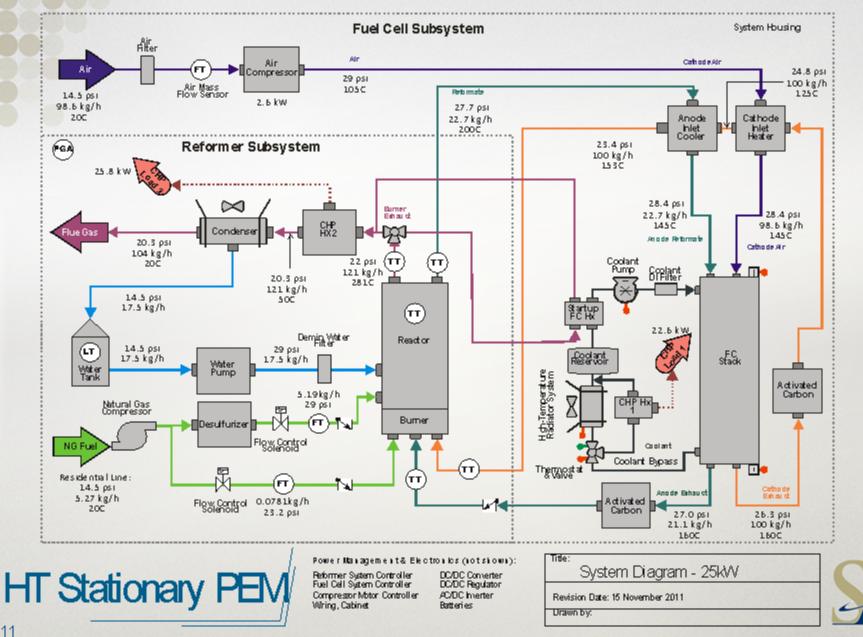
Design includes SMR reformer for natural gas reforming and fuel cell unit based on one of three technologies:


- Low Temperature PEM, preliminary analysis complete
- High Temperature PEM, preliminary analysis complete
- Solid Oxide, preliminary analysis underway
- Integrated reformer design based on Ballard prototype

Systems for all three FC technologies analyzed at different system sizes and manufacturing rates


- System size 1kW, 5kW, 25kW, and 100kW
- 100kW system represents four parallel 25 kW systems
- Manufacturing rates of 100, 1k, 10k, and 50k systems/year
- Final analysis will incorporate analysis refinements developed for Solid Oxide into High and Low Temp PEM analyses.




## **Stationary System Reactor Design**



## **Stationary System Design, Low Temperature PEM**



# Stationary System Design, High Temperature PEM



11

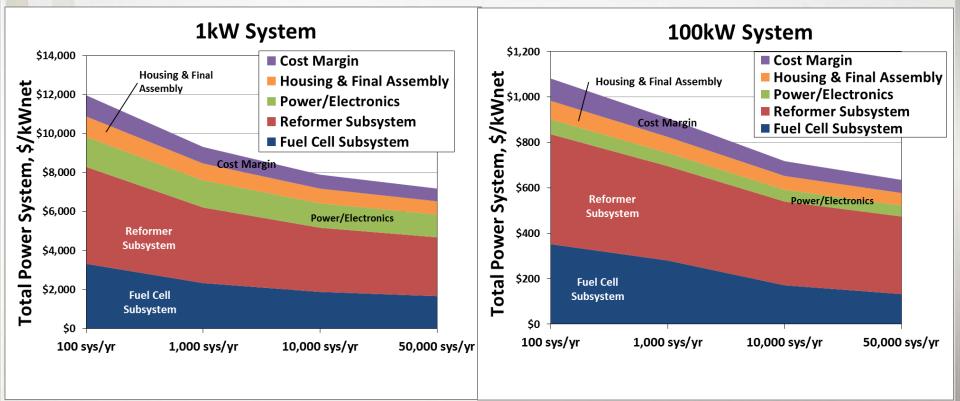
## Accomplishments: Low Temp PEM Stationary FC Systems

# System preliminary total system cost results are shown below

|               | Total System Cost, \$ |          |           |            |  |  |  |  |  |  |  |
|---------------|-----------------------|----------|-----------|------------|--|--|--|--|--|--|--|
|               | 1 kW sys              | 5 kW sys | 25 kW sys | 100 kW sys |  |  |  |  |  |  |  |
| 100 sys/yr    | \$11,963              | \$19,586 | \$43,083  | \$108,131  |  |  |  |  |  |  |  |
| 1,000 sys/yr  | \$9,311               | \$15,554 | \$35,066  | \$90,665   |  |  |  |  |  |  |  |
| 10,000 sys/yr | \$7,891               | \$13,165 | \$28,702  | \$71,748   |  |  |  |  |  |  |  |
| 50,000 sys/yr | \$7,179               | \$11,748 | \$25,223  | \$63,503   |  |  |  |  |  |  |  |

|               | Total System Cost per kWnet |          |           |            |  |  |  |  |  |  |  |
|---------------|-----------------------------|----------|-----------|------------|--|--|--|--|--|--|--|
|               | 1 kW sys                    | 5 kW sys | 25 kW sys | 100 kW sys |  |  |  |  |  |  |  |
| 100 sys/yr    | \$11,963                    | \$3,917  | \$1,723   | \$1,081    |  |  |  |  |  |  |  |
| 1,000 sys/yr  | \$9,311                     | \$3,111  | \$1,403   | \$907      |  |  |  |  |  |  |  |
| 10,000 sys/yr | \$7,891                     | \$2,633  | \$1,148   | \$717      |  |  |  |  |  |  |  |
| 50,000 sys/yr | \$7,179                     | \$2,350  | \$1,009   | \$635      |  |  |  |  |  |  |  |

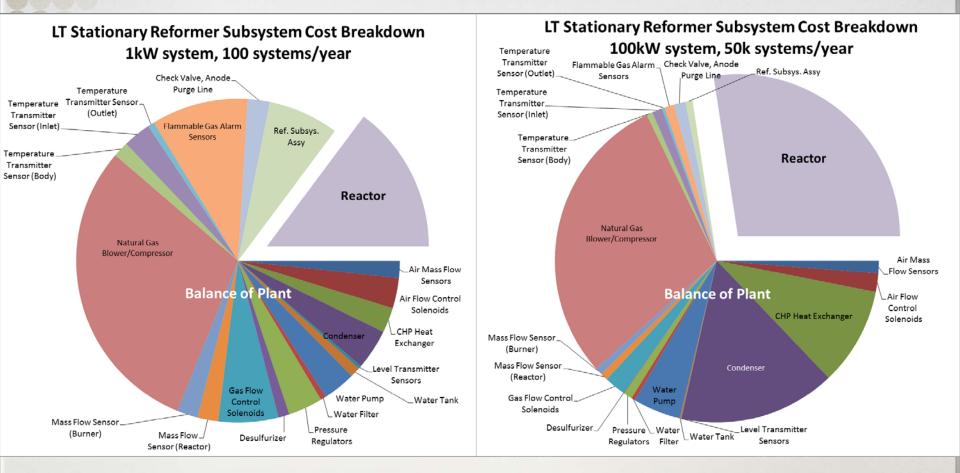
#### Each System is broken down into 5 sections


#### • Fuel cell subsystem

- Stack
- Fuel Cell System Balance of Plant (BOP)
- Reformer subsystem
  - Reactor
  - Reformer Balance of Plant
- Power & Electronics subsystem
- Housing and Final System Assembly
- Cost Margin



## Accomplishments: Low Temp PEM Stationary FC Systems


#### Preliminary total system cost results



- Reformer Subsystem is major contributor to system cost.
- Reformer BOP is dominant fraction of Ref. Subsystem cost.



## Accomplishments: Low Temp Stationary Reformer Subsystem Cost Breakdown



- BOP dominates the cost of the reformer subsystem.
- This observation also holds true for the High Temp. PEM system.
- Additional scrutiny of these BOP costs is planned.



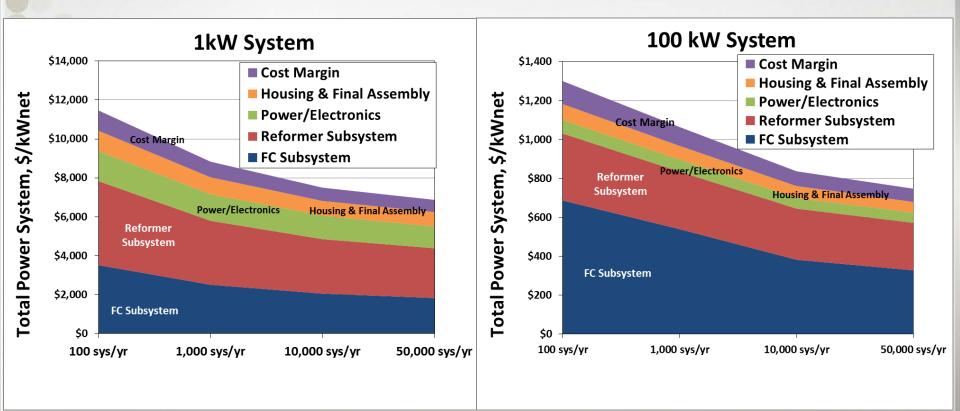
## Accomplishments: High Temp PEM Stationary FC Systems

## System preliminary total system cost results

|               | Total System Cost, \$ |          |           |            |  |  |  |  |  |  |  |
|---------------|-----------------------|----------|-----------|------------|--|--|--|--|--|--|--|
|               | 1 kW/sys              | 5 kW/sys | 25 kW/sys | 100 kW/sys |  |  |  |  |  |  |  |
| 100 sys/yr    | \$11,463              | \$20,943 | \$43,105  | \$129,969  |  |  |  |  |  |  |  |
| 1,000 sys/yr  | \$8,834               | \$16,719 | \$36,968  | \$106,371  |  |  |  |  |  |  |  |
| 10,000 sys/yr | \$7,498               | \$14,199 | \$29,194  | \$83,653   |  |  |  |  |  |  |  |
| 50,000 sys/yr | \$6,871               | \$12,493 | \$25,586  | \$74,694   |  |  |  |  |  |  |  |

|               | Тс       | otal System | Cost per kW | net        |
|---------------|----------|-------------|-------------|------------|
|               | 1 kW/sys | 5 kW/sys    | 25 kW/sys   | 100 kW/sys |
| 100 sys/yr    | \$11,463 | \$4,189     | \$1,724     | \$1,300    |
| 1,000 sys/yr  | \$8,834  | \$3,344     | \$1,479     | \$1,064    |
| 10,000 sys/yr | \$7,498  | \$2,840     | \$1,168     | \$837      |
| 50,000 sys/yr | \$6,871  | \$2,499     | \$1,023     | \$747      |

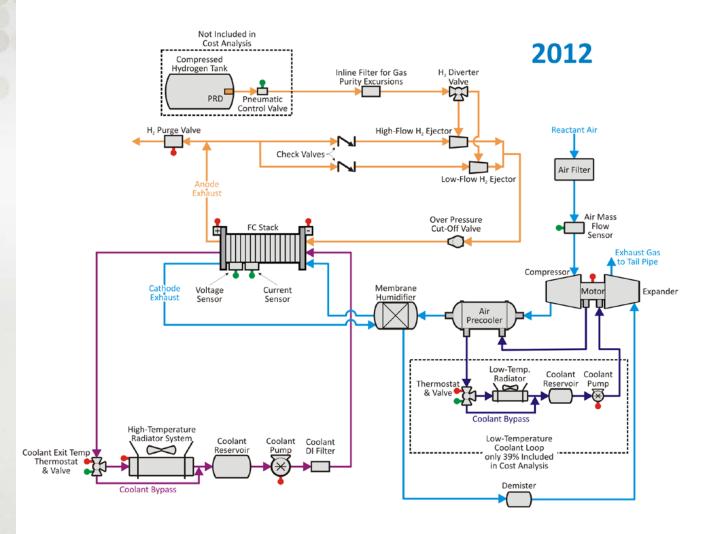
#### Each System is broken down into 5 sections


#### Fuel cell subsystem

- Stack
- Fuel Cell System Balance of Plant (BOP)
- Reformer subsystem
  - Reactor
  - Reformer Balance of Plant
- Power & Electronics subsystem
- Housing and Final System Assembly
- Cost Margin



## Accomplishments: High Temp PEM Stationary FC Systems


#### Preliminary total system cost results



- High Temp. PEM Stationary system follows same trend as Low Temp. PEM Sys.
  - Reformer Subsystem is major cost contributor.
  - Reformer BOP, rather than reactor itself, is cost driver.



## Accomplishments: 2012 80kW Automotive Update System Diagram



No substantive configuration changes between 2011 & 2012.



## Accomplishments: 2012 Automotive Update System Details

|                                          | 2011 AMR System                                                                                             | 2012 AMR System                                                                                             |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Power Density (mW/cm <sup>2</sup> )      | 1,110                                                                                                       | 1,110                                                                                                       |
| Total Pt loading (mgPt/cm <sup>2</sup> ) | 0.186                                                                                                       | 0.186                                                                                                       |
| Gross Power (kW <sub>gross</sub> )       | 89.25                                                                                                       | 89.25                                                                                                       |
| Operating Pressure (atm)                 | 3.0                                                                                                         | 3.0                                                                                                         |
| Peak Stack Temp. (°C)                    | 95                                                                                                          | 95                                                                                                          |
| Active Cells                             | 369                                                                                                         | 369                                                                                                         |
| Membrane Material                        | Nafion <sup>®</sup> on 25-micron ePTFE                                                                      | Nafion <sup>®</sup> on 25-micron ePTFE                                                                      |
| Radiator/ Cooling System                 | Aluminum Radiator,<br>Water/Glycol Coolant,<br>DI Filter, Air Precooler                                     | Aluminum Radiator,<br>Water/Glycol Coolant,<br>DI Filter, Air Precooler                                     |
| Bipolar Plates                           | Stamped SS 316L with TreadStone Coating                                                                     | Stamped SS 316L with TreadStone Coating                                                                     |
| Air Compression                          | Centrifugal Compressor,<br>Radial-Inflow Expander                                                           | Centrifugal Compressor,<br>Radial-Inflow Expander                                                           |
| Gas Diffusion Layers                     | Carbon Paper Macroporous Layer with<br>Microporous Layer                                                    | Carbon Paper Macroporous Layer with<br>Microporous Layer                                                    |
| Catalyst Application                     | Nanostructured Thin Film (NSTF)                                                                             | Nanostructured Thin Film (NSTF)                                                                             |
| Air Humidification                       | Tubular Membrane Humidifier                                                                                 | Tubular Membrane Humidifier                                                                                 |
| Hydrogen Humidification                  | None                                                                                                        | None                                                                                                        |
| Exhaust Water Recovery                   | None                                                                                                        | None                                                                                                        |
| MEA Containment                          | Injection-Molded LIM Hydrocarbon MEA<br>Frame/Gasket around Hot-Pressed M&E                                 | Injection-Molded LIM Hydrocarbon MEA<br>Frame/Gasket                                                        |
| Coolant & End Gaskets                    | Laser Welding/<br>Screen-Printed Adhesive Resin                                                             | Laser Welding/<br>Screen-Printed Adhesive Resin                                                             |
| Freeze Protection                        | Drain Water at Shutdown                                                                                     | Drain Water at Shutdown                                                                                     |
| Hydrogen Sensors                         | 2 for FC System<br>1 for Passenger Cabin (not in cost estimate)<br>1 for Fuel System (not in cost estimate) | 2 for FC System<br>1 for Passenger Cabin (not in cost estimate)<br>1 for Fuel System (not in cost estimate) |
| End Plates/<br>Compression System        | Composite Molded End Plates with Compression<br>Bands                                                       | Composite Molded End Plates with Compression<br>Bands                                                       |
| Stack Conditioning (hrs)                 | 5                                                                                                           | 5                                                                                                           |



## Accomplishments: 2012 Automotive Changes from Previous Year

| Change                                                                                                   | Reason                                                                                                           | Change from<br>previous<br>value | <b>Cost \$/kW</b><br>(at 500k sys/year) |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------|
| 2011 AMR Preliminary Cost Value                                                                          |                                                                                                                  | N/A                              | \$47.81                                 |
| Press force calculations & capital cost<br>parameters for bipolar plate stamping                         | Analysis altered to account for swageing of material, as opposed to simple bending.                              | \$0.06                           | \$47.87                                 |
| Gasket injection molding calculations                                                                    | Model refined and molding cavity count re-<br>optimized                                                          | \$0.31                           | \$48.18                                 |
| GDL Thickness reduced from 300 $\mu m$ to 150 $\mu m$                                                    | Response to industry review                                                                                      | -\$0.25                          | \$47.93                                 |
| Final system assembly calculations refined and expanded                                                  | Response to industry review                                                                                      | -\$0.16                          | \$47.78                                 |
| Piping configuration/costing updated & expanded                                                          | Response to industry review                                                                                      | \$0.66                           | \$48.43                                 |
| Air temperature sensor added to system to monitor coolant exit conditions                                | Response to industry review                                                                                      | \$0.06                           | \$48.49                                 |
| Purge valve upgraded to multi-function model                                                             | Response to industry review                                                                                      | \$0.33                           | \$48.82                                 |
| Hot pressing process removed and replaced<br>with crimping roller process prior to cutting &<br>slitting | Hot pressing incompatible with NSTF catalyst deposition, new method required for combining membrane & GDL layers | -\$0.06                          | \$48.76                                 |
| Final 2012 AMR Value                                                                                     |                                                                                                                  | \$0.95                           | \$48.76                                 |

 Changes from last year consist of a series of small cost impact refinements/improvements.

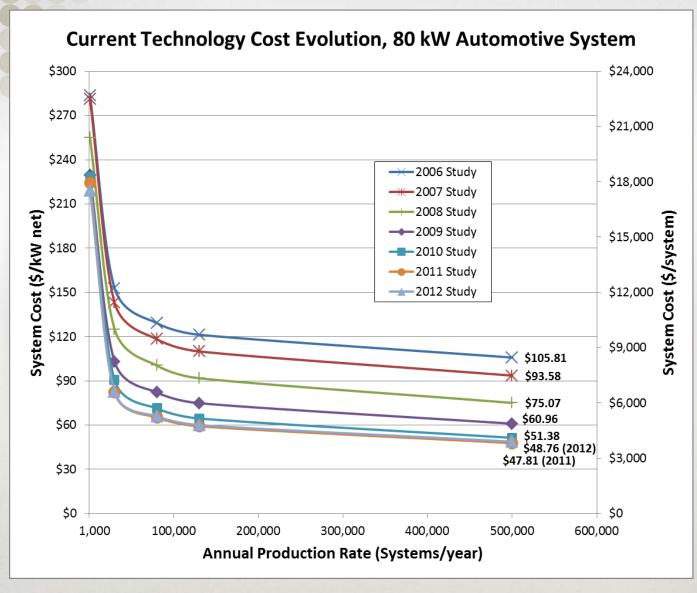


## Accomplishments: 2012 Automotive System and Stack Costs



- Stack and System cost curves exhibit similar shape as seen in previous year's analysis.
- "Knee in curve" occurs at ~50k systems/year.




## **Tornado Chart**

|                                                    |        |        | _    | •     | _      |       |                    | -      |       |    |      | System Cost (                        | \$/kWne              | t), 500,0    | )00 sys/      | year              |
|----------------------------------------------------|--------|--------|------|-------|--------|-------|--------------------|--------|-------|----|------|--------------------------------------|----------------------|--------------|---------------|-------------------|
| 201<br>Power Density                               | 12 A   | MR I   | Resu | lts   | Tor    | na    | do                 | Cha    | art   |    | 1    | Parameter                            | Units                | Low<br>Value | Base<br>Value | High<br>Value     |
|                                                    |        |        | _    |       |        |       | -                  |        |       |    |      | Power Density                        | mW/cm²               | 700          | 1110          | 1400              |
| Air Compressor Cost                                |        |        |      |       |        |       |                    |        |       |    |      |                                      | -                    |              | -             |                   |
| Pt Loading                                         |        |        |      |       |        |       | _                  |        |       |    |      | Air Compressor Cost                  | \$/system            | \$366.48     | \$732.95      | \$1,099.43        |
| Compressor/Expander Eff.                           |        |        |      |       |        |       |                    |        |       |    |      | Pt Loading                           | mgPt/cm <sup>2</sup> | 0.1          | 0.186         | 0.25              |
| Air Stoichiometry<br>Membrane Cost                 |        |        |      |       |        |       |                    |        |       |    |      | Compressor/Expander<br>Eff.          | %                    | 50%          | 64%           | 69%               |
| Bipolar Plate Coating Cost Factor                  |        |        |      |       |        |       |                    |        |       |    |      | Air Stoichiometry                    |                      | 1.3          | 1.5           | 2.0               |
| GDL Cost                                           |        |        |      |       |        |       |                    | Low    | Value |    |      | Membrane Cost                        | \$/m²                | \$2.50       | \$23.21       | \$34.82           |
| Balance of Air Compressor Cost                     |        |        |      |       |        |       |                    | 📕 High | Value |    |      | Bipolar Plate Coating<br>Cost Factor |                      | 0            | 1             | 2                 |
| Operating Pressure                                 |        |        |      |       |        |       |                    |        |       |    |      | GDL Cost                             | \$/m²                | \$3.00       | \$11.03       | \$16.55           |
| Bipolar Plate Cost Factor<br>Operating Temperature |        |        |      |       |        |       |                    |        |       |    |      | Balance of Air<br>Compressor Cost    | \$/system            | \$73.15      | \$146.30      | \$292.60          |
| Membrane Humidifier Cost                           |        |        |      |       |        |       |                    |        |       |    |      | Operating Pressure                   | atm                  | 1.5          | 3             | 3                 |
|                                                    |        |        |      |       |        |       |                    |        |       |    |      | Bipolar Plate Cost<br>Factor         |                      | 0.75         | 1.00          | 1.25              |
| \$4                                                | 40 \$4 | 2 \$44 | \$46 | \$48  | \$50   | \$52  | \$5                | 54 \$5 | 6 \$5 | 58 | \$60 | Operating Temperature                | °C                   | 80           | 95            | 95                |
|                                                    |        |        | S    | ystem | Cost ( | \$/kW | V <sub>net</sub> ) |        |       |    |      | Membrane Humidifier<br>Cost          | \$/system            | \$29.51      | \$59.01       | \$88.52           |
|                                                    |        |        |      |       |        |       |                    |        |       |    |      | 2012 AMR S                           | ystem C              | ost          | \$48          | <mark>3.76</mark> |

- Power density remains dominant cost parameter.
- Air compressor error bands large due to diversity of approach/opinion within community.



## **Automotive Fuel Cell System Trend**



- Previous years of analysis allow analysis of cost trends.
- A downward trend is observed.
- Projected cost slightly rises from 2011 to 2012 based on analysis refinement.



# Collaborations

## **Argonne National Labs**

- System design and modeling support
- Specify key system parameters and range of sensitivity studies
- SA calculations and point designs verified against ANL modeling

## National Renewable Energy Laboratory

Expertise on manufacturing and quality control systems

## Industry Collaborators

- Ford, Ballard, NexTech, Catacel, Enersys Innovation, PNNL
- Vet results and provide manufacturing process insight
- Stationary reformer design based on concept supplied by Industry



# **Proposed Future Work:**

Stationary Solid Oxide FC System

- Bus Systems
  - 150 kW systems
  - Manufacturing rates of 1k, 10k, 30k, 80k, 130k, 500k
- Explore differences between light duty vehicle and bus systems
  - Peak installed power
  - System lifetime
  - Number of start/stop cycle over system lifetime,
  - Layout of system components due to available volume
  - Differences in system component form (cell aspect ratio)
  - Drive cycle impact on LCC and resulting FC operating parameter optimization
- Life Cycle Cost Analysis





Overview

- Cost analysis of stationary, automobile, and bus fuel cell systems
- Final stage of auto & stationary project
- In year 1 of 5 year transportation project
- Relevance
  - Cost analysis used to assess practicality of proposed storage system, determine key cost drivers, and provide insight for direction of R&D priorities
- Approach
  - Process based cost analysis methodologies (e.g. DFMA)
- Accomplishments
  - Low and High Temperature PEM stationary systems analysis complete
  - 2011 Automobile analysis complete
  - 2012 Automotive analysis underway
  - In progress analysis of Solid Oxide stationary system
- Collaborations
  - ANL and NREL provide cooperative analysis and vetting of assumptions/results
  - Ballard/NexTech provide system design input for stationary systems.
- Future Work
  - Conclude Solid Oxide and final pass of stationary systems
  - Conclude analysis of automobile and bus systems







# **Technical Backup Slides**



## **Stationary System Overview**

Cost of system is highly dependent on specific application and configuration.

#### Therefore, we have made the following assumptions

- Operation on Natural Gas
  - Cost of operation on Propane would be quite similar but fuel compressor might not be needed, and sizing of reactor would slightly change
- Natural Gas supply pressure
  - For 1kW and 5kW systems: NG gas supplied at 2 psig (thereby requiring a NG compressor)
  - For 25kW and 100kW systems: NG supplied at 15 psig (thereby requiring only a pressure regulator)
- Design for Water Neutral Operation
  - System assumes an initial charge of DI water
  - Condenser on flue gas is used to recover all future system water needs
  - In hot/dry climate, additional water might be necessary (and water cleanup up subsystem)
- Moderate climate is assumed
  - No extreme cold heat tracing is added to the system
- Fuel Cell stack is oil cooled
- Combined Heat and Power (CHP) operation
  - System configurations assumed usable heat from both the stack and from the reactor
  - Quantity and Quality of excess heat from these two streams are quite different
  - System cost includes two CHP heat exchangers:
    - 1) Liquid/Liquid Heat exchanger (Fuel Cell Oil Coolant to Building Liquid Coolant)
    - 2) Gas/Liquid Heat exchanger (Reactor Flue Gas to Building Liquid Coolant)
  - Further details of the heat transfer to the building have not been modeled



## Low Temp PEM FC System Configuration Assumptions

| Technology Type                      |               |           |       | St    | ationary Low | Temp PEM |       |       |        |
|--------------------------------------|---------------|-----------|-------|-------|--------------|----------|-------|-------|--------|
| Annual Production Rate               | systems/year  | 100 1,000 |       |       |              |          |       |       |        |
| System Net Electric Power (Output)   | kWnet         | 1         | 5     | 25    | 100          | 1        | 5     | 25    | 100    |
| System Voltage @ Peak Power          | V             | 24        | 120   | 250   | 250          | 24       | 120   | 250   | 250    |
| Active Width                         | cm            | 10.60     | 10.66 | 11.69 | 16.54        | 10.60    | 10.66 | 11.69 | 16.54  |
| Active Height                        | cm            | 7.07      | 7.11  | 7.80  | 11.03        | 7.07     | 7.11  | 7.80  | 11.03  |
| Active Cells per Stack               | cells/stack   | 36        | 178   | 185   | 370          | 36       | 178   | 185   | 370    |
| Cell Voltage @ Peak Power            | V/cell        | 0.676     | 0.676 | 0.676 | 0.676        | 0.676    | 0.676 | 0.676 | 0.676  |
| Stacks per System                    | stacks/system | 1         | 1     | 4     | 4            | 1        | 1     | 4     | 4      |
| System Gross Electric Power (Output) | kWgross       | 1.10      | 5.50  | 27.50 | 110.00       | 1.10     | 5.50  | 27.50 | 110.00 |
| MEA Areal Power Density @ Peak Power | mW/cm2        | 408       | 408   | 408   | 408          | 408      | 408   | 408   | 408    |

| Annual Production Rate               | systems/year  |       | 10    | ,000  |        |       | 50    | ),000 |        |
|--------------------------------------|---------------|-------|-------|-------|--------|-------|-------|-------|--------|
| System Net Electric Power (Output)   | kWnet         | 1     | 5     | 25    | 100    | 1     | 5     | 25    | 100    |
| System Voltage @ Peak Power          | V             | 24    | 120   | 250   | 250    | 24    | 120   | 250   | 250    |
| Active Width                         | cm            | 10.60 | 10.66 | 11.69 | 16.54  | 10.60 | 10.66 | 11.69 | 16.54  |
| Active Height                        | cm            | 7.07  | 7.11  | 7.80  | 11.03  | 7.07  | 7.11  | 7.80  | 11.03  |
| Active Cells per Stack               | cells/stack   | 36    | 178   | 185   | 370    | 36    | 178   | 185   | 370    |
| Cell Voltage @ Peak Power            | V/cell        | 0.676 | 0.676 | 0.676 | 0.676  | 0.676 | 0.676 | 0.676 | 0.676  |
| Stacks per System                    | stacks/system | 1     | 1     | 4     | 4      | 1     | 1     | 4     | 4      |
| System Gross Electric Power (Output) | kWgross       | 1.10  | 5.50  | 27.50 | 110.00 | 1.10  | 5.50  | 27.50 | 110.00 |
| MEA Areal Power Density @ Peak Power | mW/cm2        | 408   | 408   | 408   | 408    | 408   | 408   | 408   | 408    |



## High Temp PEM FC System Configuration Assumptions

| Technology Type                      |               |           | Stationary High Temperature PEM |       |        |         |         |       |        |  |  |
|--------------------------------------|---------------|-----------|---------------------------------|-------|--------|---------|---------|-------|--------|--|--|
| Annual Production Rate               | systems/year  | 100 1,000 |                                 |       |        |         |         |       |        |  |  |
| System Net Electric Power (Output)   | kWnet         | 1         | 5                               | 25    | 100    | 1       | 5       | 25    | 100    |  |  |
| System Voltage @ Peak Power          | V             | 21.84     | 109.2                           | 104   | 209.52 | 21.84   | 109.2   | 104   | 209.52 |  |  |
| Cell Active Width                    | cm            | 14.56     | 14.56                           | 33.36 | 33.36  | 14.56   | 14.56   | 33.36 | 33.36  |  |  |
| Cell Active Length                   | cm            | 9.71      | 9.71                            | 22.24 | 22.24  | 9.71    | 9.71    | 22.24 | 22.24  |  |  |
| Active Cells per Stack               | cells/stack   | 42        | 210                             | 200   | 403    | 42      | 210     | 200   | 403    |  |  |
| Cell Voltage @ Peak Power            | V/cell        | 0.520     | 0.520                           | 0.520 | 0.520  | 0.520   | 0.520   | 0.520 | 0.520  |  |  |
| Stacks per System                    | stacks/system | 1         | 1                               | 1     | 2      | 1       | 1       | 1     | 2      |  |  |
| System Gross Electric Power (Output) | kWgross       | 1.19      | 5.93                            | 29.67 | 119.57 | 1.19    | 5.93    | 29.67 | 119.57 |  |  |
| MEA Areal Power Density @ Peak Power | mW/cm2        | 200       | 200                             | 200   | 200    | 200     | 200     | 200   | 200    |  |  |
| Total FC Subsystem Cost              | \$/kWnet      | \$3,506   | \$1,506                         | \$815 | \$681  | \$2,508 | \$1,125 | \$715 | \$551  |  |  |
| Total Stacks Cost                    | \$/kW (Net)   | \$1,762   | \$1,085                         | \$706 | \$643  | \$1,080 | \$774   | \$622 | \$518  |  |  |

| Annual Production Rate               | systems/year  |         | 10    | ,000  |        |         | 50,000 |       |        |  |  |  |
|--------------------------------------|---------------|---------|-------|-------|--------|---------|--------|-------|--------|--|--|--|
| System Net Electric Power (Output)   | kWnet         | 1       | 5     | 25    | 100    | 1       | 5      | 25    | 100    |  |  |  |
| System Voltage @ Peak Power          | V             | 21.84   | 109.2 | 104   | 209.52 | 21.84   | 109.2  | 104   | 209.52 |  |  |  |
| Cell Active Width                    | cm            | 14.56   | 14.56 | 33.36 | 33.36  | 14.56   | 14.56  | 33.36 | 33.36  |  |  |  |
| Cell Active Length                   | cm            | 9.71    | 9.71  | 22.24 | 22.24  | 9.71    | 9.71   | 22.24 | 22.24  |  |  |  |
| Active Cells per Stack               | cells/stack   | 42      | 210   | 200   | 403    | 42      | 210    | 200   | 403    |  |  |  |
| Cell Voltage @ Peak Power            | V/cell        | 0.520   | 0.520 | 0.520 | 0.520  | 0.520   | 0.520  | 0.520 | 0.520  |  |  |  |
| Stacks per System                    | stacks/system | 1       | 1     | 1     | 2      | 1       | 1      | 1     | 2      |  |  |  |
| System Gross Electric Power (Output) | kWgross       | 1.19    | 5.93  | 29.67 | 119.57 | 1.19    | 5.93   | 29.67 | 119.57 |  |  |  |
| MEA Areal Power Density @ Peak Power | mW/cm2        | 200     | 200   | 200   | 200    | 200     | 200    | 200   | 200    |  |  |  |
| Total FC Subsystem Cost              | \$/kWnet      | \$2,052 | \$966 | \$507 | \$381  | \$1,828 | \$745  | \$417 | \$327  |  |  |  |
| Total Stacks Cost                    | \$/kW (Net)   | \$789   | \$655 | \$425 | \$352  | \$695   | \$465  | \$343 | \$301  |  |  |  |

