

AURORA Program

Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks

Presenter: Robert Dross (PM) Principal Investigator: Amedeo Conti Nuvera Fuel Cells May 17, 2012

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project ID # **FC028**

Program Overview

Timeline

- Actual start: 9/1/2009
- Planned end: 8/31/2012 \bullet
- 90% complete ${\color{black}\bullet}$

Budget

- Total project funding lacksquare
 - \$4.46 M (DOE, includes \$375K to LBNL)

Johnson Matthey Fuel Cells - the power within

- \$1.57 M (Cost Share)
- FY'11 Actual Funding: \$1.195 M
- Planned FY'12 Funding: \$0.876 M \bullet

Barriers addressed – (B) Cost (C) Performance

- \bullet

 \bullet

 \bullet

THE UNIVERSITY of

ENNESSEE

Barriers

(E) System thermal & water management

Partners

Johnson Matthey Fuel Cells Penn State University / University of Tennessee Lawrence Berkeley Lab

Relevance

The **objective** of this program is to optimize the efficiency of a stack technology meeting DOE 2015 cost targets.

Table 3.4.4 Technical Targets: 80-kW _e (net) Transportation Fuel Cell Stacks Operating on Direct Hydrogen ^a									
Characteristic	Units	2011 Status	2017 Targets	2020 Targets					
Stack power density ^b	W/L	2,200 ^c	2,250	2,500					
Stack specific power	W / kg	1,200 ^c	2,000	2,000					
Stack efficiency ^d @ 25% of rated power	%	65	65	65					
Cost ^e	\$ / kW _e	22 ^f	15	15					
Durability with cycling	hours	2,500 ^g	5,000 ^h	5,000 ^h					
Q/ΔT ⁱ	kW/ºC	—	1.45	1.45					

Based on 2002 dollars and cost projected to high-volume production (500,000 stacks per year). e

Program is on schedule and the 2010 Go/No-Go milestone has been met

3

Technical Target - Approach

Target: Demonstrate stable and repeatable high power performance on a full format fuel cell stack: 7.5 W/mg-Pt @ 500mV.

Program Approach

Single Cell Development Performance of SCOF compared to full format Orion stack.

Single Cell **Open Flowfield** (SCOF) Hardware

2.5

MEA27 : JM MEA27, 0.05 mg Pt/cm² An, 0.15 mg Pt/cm² Ca GDL: SGL 25BC MEA28 : JM MEA28, 0.05 mg Pt/cm² An, 0.15 mg Pt/cm² Ca GDL: SGL 25BC

Single Cell Testing Low Pt loading (0.2 mg-Pt/cm²) MEAs from JM tested on SCOF hardware

T_{cell}= 60 °C, An 50% RH, Ca 0% RH, Press ~1.1 to 2.4 bara MEA28 : JM MEA28, 0.05 mg Pt/cm² An, 0.15 mg Pt/cm² Ca GDL: SGL 25BC

Specific Power of 7.3 W/mg-Pt Achieved on single cell

 Stability demonstrated at high current density point

7

Single Cell Testing

Temperature sensitivity study conducted at 2 A/cm² on standard Pt loading (0.55 mg-Pt/cm²) materials

Critical parameters to

Single Cell Testing

Stable performance demonstrated at elevated temperature with low Pt loading materials (0.2 mg-Pt/cm²)

Current Density (A/cm²)

T_{cell}= 90 °C, An 53% RH, Ca 75% RH, Press 2.4 bara SCOF cell, JM MEA28: 0.05 mg Pt/cm² An, 0.15 mg Pt/cm² Ca, GDL: SGL 25BC

Stack Testing

Stable performance at elevated temperature on full format, 64 cell stack using a cathode humidifier.

Current Density = 2.20 A/cm^2 , Inlet Pressure = 1.40 bargAnode Stoich = 2.00, Anode RH = 50%

10

Model Roadmap

A model capable of predicting high current density operation in different architectures is the central deliverable of the program

- Single phase model generation from PSU 2D channel/land model Q2 2010 Completed \geq 2D +1, counter flow reactants, compatible with multiple architectures
- Initial validation with empirical Nuvera model Q3 2010 Completed
- Initial performance verification Q4 2010 Completed
- > Multi-phase physics implementation Q1 2011 Completed
 - Verification with empirical Nuvera model
 - Initial performance verification
- > Agglomerate electrode model implementation (LBNL) Q1 2011 Completed
- Tune model parameters and collect dataset Q3 2011 Completed
- > Model Validation: Demonstrate predictive capability Q4 2011 Completed
- Additional Model Validation Q3 2012 On Track > Validate: High Temperature, Channel Land Architecture, Low Pt Loading
- Model Publication Q3 2012 On Track

FC Modeling -- Approach

The physics of the quasi-3D, multi-architecture model is as similar as possible between channel/land and open flowfields.

2D+1 model reduces computational efforts

- No parameters vary in Y direction inside control volume.
- Species concentrations and T vary in Y direction along different control volumes.
- 2D model (XZ) is inferred by variations along Y and uses a fine mesh to predict local conditions accurately.

different control volumes. es a fine mesh to predict local

FC Modeling - Status

Model validation at high temperatures

FC Modeling - Status

Thermo-osmosis in the membrane is the mode of temperature-driven water transport. Water flux was proportional to temperature difference and increases with average membrane temperature with the direction from cold to hot side.¹

1. Kim, S.; Mench, M. M., Investigation of temperature-driven water transport in polymer electrolyte fuel cell: Thermo-osmosis in membranes. J Membrane Sci 2009, 328 (1-2), 113-120.

$$\frac{10^{-5}}{10^{-3}}\exp\left(-\frac{2297}{T}\right)\frac{mol}{m\cdot s\cdot K}$$

FC Modeling - Status Model validation of channel/land architecture

INUVERA

Model was successfully validated for the channel/land architecture at 90°C

Materials Roadmap

Material development aimed at reducing Pt loading and optimizing performance at high current densities is key to the success of the program

Strategy	2010			2011			2012				
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
Pt Reduction on Standard Electrodes											
New Electrode Structures											
Graded Pt Loading Electrodes											
Further reduction in Pt Loading											
Thinner Membranes											
Low Equivalent Weight Ionomer in Electrode											
Novel MEA Architectures											
Improved Resistivity Membranes											

Materials Development Status

Demonstrated 7.98 W/mg-Pt at 521 mV on a 4 Cell Orion Stack

GDL: SGL 25BC

Plan and Milestones - Approach

The program is on schedule and the Go/No-Go milestone has been met

Future Work

Single cell testing

- Test new MEAs to support ongoing materials development
- Perform parametric studies to support model tuning and validation

Model development

- Tune and validate model for:
 - High Temperature Operation
 - Channel/Land architectures
 - Low Pt Loading MEA
- Publish Model and Dataset

Material development

MEAs with improved resistivity will be produced and tested in 2012

19

Summary

- The AURORA program plans to achieve DOE cost targets by using a combination of high current density with low Pt loadings.
 - 7.5 W/mgPt => \$15/kW•
- A model capable of predicting high current density operation in different \bullet architectures is the central deliverable of the program. Model predictions have been used to drive materials development lacksquare

 - Verification at high temperature is underway lacksquare
- Material development aimed at reducing Pt loading and optimizing \bullet performance at high current densities is key to the success of the program.
 - 7.98 W/mg-Pt was demonstrated on a full format 4 Cell Orion Stack ullet
- High temperature operation has been explored in both single cell and full format stack testing to address $Q/\Delta T_i$ requirements
 - Stable operation up to 90°C was demonstrated on a 64 cell stack using a cathode humidifier.

Technical Back-Up Slides

Single Cell Development Gasket contamination problem was identified and solved.

- Zn contamination from the gasket caused excessive degradation.
- Problem was solved by changing gasket material.

	Results Date:	Buna - N 10/24/2011						
	Element	AN	series	Net	[wt%]	rm. wt%]	orm. at%]	Error in %
	Carbon	6	K-series	231235	74.3848	74.38629	82.46738	23.98283
	Sodium	11	K-series	125	0.016078	0.016078	0.009313	0.012734
	Aluminium	13	K-series	3540	0.232983	0.232988	0.114983	0.037769
	Silicon	14	K-series	8042	0.344054	0.344061	0.163126	0.040908
	Sulfur	16	K-series	25278	1.290687	1.290713	0.535986	0.072956
_	Potassium	19	K-series	3234	0.18409	0.184094	0.062697	0.031803
1	Iron	26	K-series	1626	0.189909	0.189913	0.045282	0.032124
	Zinc	30	K-series	21145	4.513156	4.513246	0.919065	0.144731
	Oxygen	8	K-series	10197	18.84224	18.84262	15.68216	6.273889
				Sum:	99.998	100	100	
w.d.	- Charleson	A training the	in the least and the	Rid on the Latest	Fe			
2	3	4	5 5	v 6	7	E C	3	9

T Coulto	Ft Cureu S	llicone					
Date:	10/24/2011						
Element	AN	series	Net	[wt%]	rm. wt%]	orm. at%]	Error in
Carbon	6	K-series	61598	10.99416	15.96902	24.94943	1.3016
Silicon	14	K-series	946531	32.06639	46.57643	31.12044	1.4116
Oxygen	8	K-series	33728	25.78626	37.45455	43.93013	3.1652
			Sum:	68.84682	100	100	

22

FC Modeling - Status

Study to determine the dominant water transport mechanism.

Since MPL is the most restrictive component for liquid water, the parametric study on MPL permeability is conducted to determine whether capillary flow is dominating. As observed, the order of magnitude change in MPL permeability has minimal impact on net water transport, therefore the capillary flow is considered insignificant compared to gas phase transport.

The non-dimensional Peclet Number is used to measure the relative importance of convective to diffusive flow. Even though Pe increases with current density, it is orders of magnitude lower than unity, indicating convective flux is insignificant compared to diffusive flux.

Net water balance is very sensitive to changes in water vapor diffusion coefficient, confirming the dominating role of diffusive flow in water transport in porous media.

FC Modeling - Status High temperature modeling approach

RH=50% constant dry cathode

RH=50% constant high ∆T BP 1.8 | 2.4 cathode RH=50%

High temperature model tuning and validation preliminary results

FC Modeling - Status High temperature model tuning and validation preliminary results Condition 5: Discrepancies Condition 4:

between the model and experimental data (HFR and performance) is believed to be caused by the ionic

fuel cells. J Electrochem Soc 2009, 156, B1440.