

Lead Research and **Development Activity for DOE's High Temperature, Low Relative Humidity Membrane Program** James Fenton University of Central Florida-FSEC May 18, 2012 Project ID #FC035

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: April 1, 2006
- Project end date: May 31, 2012
- Percent complete: 99%

Budget

- Total project funding
 - DOE share: \$2,650K
 - Cost share: \$663K
- Funding received in FY11: \$240K
- Planned funding for FY12: \$75K

Barriers

- A. **Durability:** Membrane and MEA durability
- C. **Performance:** High MEA performance at low RH & high T

Partners

Scribner Associates – Through-plane and In–plane conductivity testing

High Temperature Membrane Working Group

Relevance

- •Allows HTMWG Teams to concentrate on membrane development
- •Membranes identified by supplier as promising are evaluated for in-situ performance
- Objectives:
 - Fabricate and test membrane electrode assemblies (MEAs) from Team membranes using standardized methodologies
 - Provide data and analysis to Teams to guide future development

Approach

- Evaluate proton conductivity
- Prepare and evaluate catalyst-coated membranes and MEAs
 - Performance, H_2 cross-over, and durability at high T, low RH
 - Pre- and post-test analysis including SEM, TEM, and crossover/defect test
- Provide comprehensive report to supplier

DOE targets

- Conductivity = 0.07 S/cm @ 80% relative humidity (RH) at room temp using alternate material (milestone)
- Conductivity >0.1 S/cm @ 50% RH at 120 °C (Go/No-Go)
- H_2 and O_2 cross-over < 2 mA/cm² (tested in MEA)

Desired Membrane Characteristics

High protonic conductivity Low cross-over Low electrical conductivity Easily fabricated into an MEA Good CCM performance Good durability

Accomplishments FuelCell Energy Membranes

High protonic conductivity

Low cross-over

Low electrical conductivity

Easily fabricated into an MEA

Good CCM performance

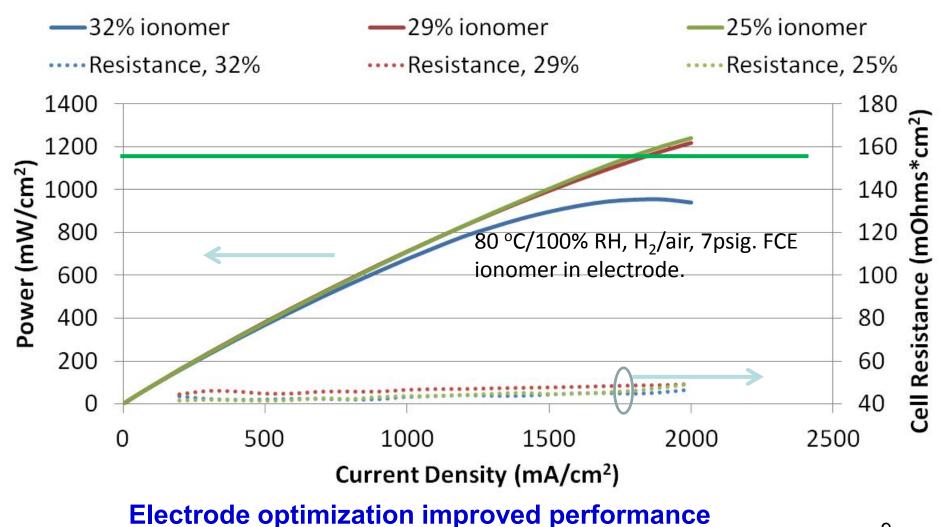
Good durability

Accomplishments FuelCell Energy Membranes

- Optimized electrode ionomer content (FCE ionomer) to maximize performance
 - Optimized electrode exhibited low cell resistance
 - Observed a dependency of current interrupt resistance on electrode ionomer type and content

FCE Membranes & DOE Targets

Characteristic	Units	Target 2017	B5 Opt.	B9 Opt.	NRE211 CCM
Area specific proton resistance at:					
120°C and 40 - 80 kPa H_2O partial pressure	Ohm cm ²	≤ 0.02	0.064*	0.110*	0.144*
80°C and 25 - 45 kPa H ₂ O partial pressure	Ohm cm ²	≤ 0.02	0.016 [‡]	0.045‡	0.020 ‡
Contact Resistance (Interrupt – ASR)					
120°C and 70 kPa water partial pressure	Ohm cm ²		0.042	0.039	0.036
80°C and 38 kPa water partial pressure	Ohm cm ²		0.030	0.009	0.037
Maximum Hydrogen cross-over	mA / cm ²	2	1.6	<0.4	1.08
Minimum electrical resistance	Ohm cm ²	1000	417	855	526
Performance @ 0.8V	mA / cm ²	300	209	137	158
Performance @ rated power	mW / cm ²	1000	1239	577	936
Total fluoride emission during stability test	μmol	-	89	62	


*Measured at 120°C and 70 kPa water partial pressure

[‡]Measured at 80°C and 38 kPa water partial pressure

Modifications to membrane to improve degradation may have led to increased resistance

B5 CCM exhibited higher performance than DOE target

Progress Towards DOE Power Target

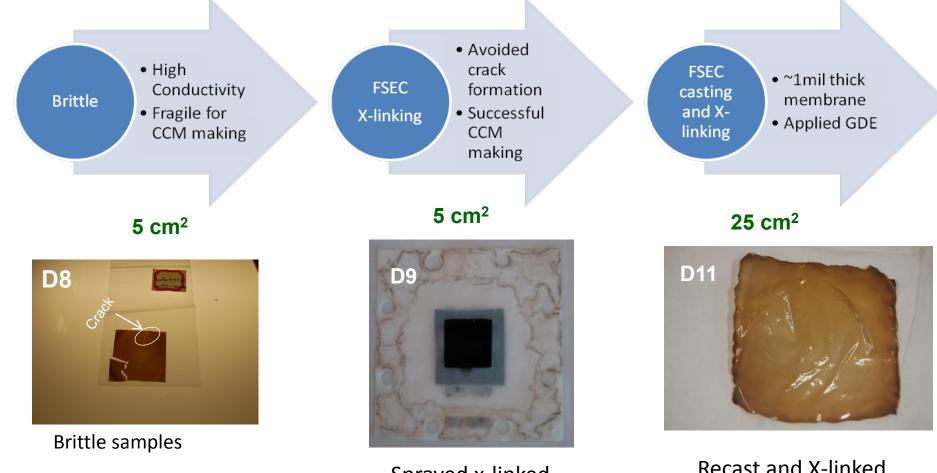
FCE Summary

- FCE membranes show low proton resistance, even at high temp/low RH
- Electrode composition (with FCE ionomer) optimized through FSEC/FCE collaboration
 - Potential collaborative publication: capacitance vs. ionomer loading

Accomplishments Case Western Membranes

High protonic conductivity

Low cross-over


Low electrical conductivity

Easily fabricated into an MEA

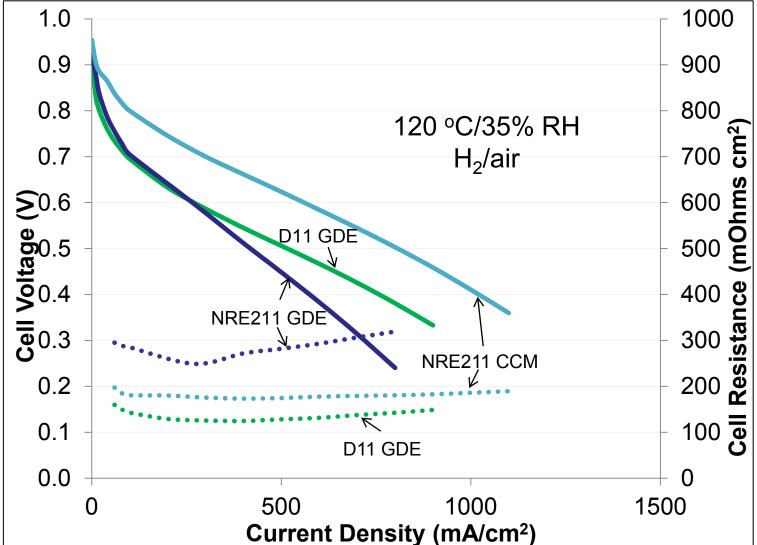
Good CCM performance

Good durability

Accomplishments Membrane Manufacturing

Sprayed x-linked membrane

Recast and X-linked membrane ¹²


Accomplishments MEA Manufacturing & Testing

Modified test protocol in collaboration with CWR

- Assembled D11 into **GDE**-based cell
- RH maintained at 35% at request of CWR
- •Assembled NRE 211 GDE and tested to same conditions as D11

– D11 out performed and out lasted NRE 211

GDE Impact on Performance

D11 membrane shows much lower resistance than NRE but performance could be improved with CCM

CWR Cell: GDE versus CCM

		Target			NRE211	NRE211
Characteristic	Units	2017	GDE 35%*	GDE 35%*	GDE	ССМ
Cell resistance at:						
120 °C and 70 kPa water partial pressure	Ohm cm ²		0.193	0.287	0.275	0.180
80 °C and 38 kPa water partial pressure	Ohm cm ²		0.100	0.158	0.064	0.057
Contact resistance						
120 °C and 70 kPa water partial pressure	Ohm cm ²			0.142	0.131	0.036
80 °C and 38 kPa water partial pressure	Ohm cm ²			0.048	0.044	0.037
Maximum hydrogen cross-over	mA / cm ²	2	<0.4	0.8	1.20	1.08
Hydrogen cross-over at EOT	mA / cm ²	2 🤇	<0.2	short	0.72	1.48
Minimum electrical resistance	Ohm cm ²	1000	1648	1101	1310	526
Performance @ 0.8 V (¼ power)	mA / cm ²	300	15	62	190	158
Performance @ rated power	mW / cm ²	1000	280	380	855	936

*Membranes tested at low RH as requested by CWR

Contact resistance is much higher for the GDEs than the CCM D11 membrane showed better durability after testing in <u>harsh</u> conditions

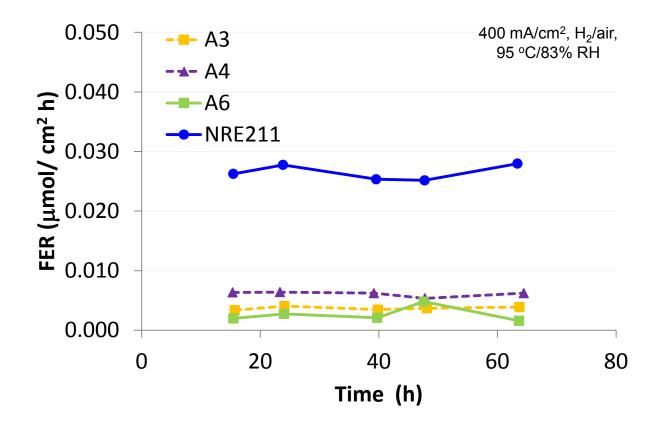
CWR Summary

- FSEC assistance in casting and crosslinking has solved early issues
 - Crosslinking has eliminated solubility issues
 - Membrane thickness reduced to 1 mil
- Resistance from cell interrupt good
 Membranes are highly conductive
- Cell performance is dominated by interfacial resistance with GDE
- Membrane integrity maintained even at harsh conditions

Accomplishments – Giner Membranes

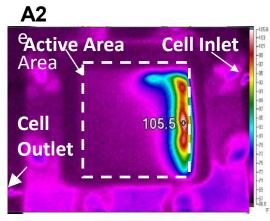
High protonic conductivity

Low cross-over

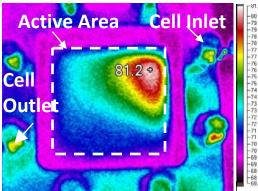

Low electrical conductivity

Easily fabricated into an MEA

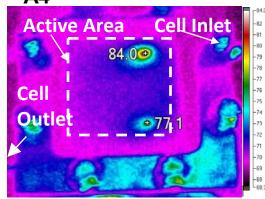
Good CCM performance


Good durability

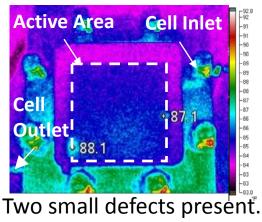
Giner Membrane Stability


Giner membranes consistently show FER that is an order of magnitude lower than NRE 211

Localized Defects


Large defect.

A3


Large defect.

A4

Two defects.

A6

Membranes show fewer cracks and pinholes, after testing, in their more recent materials

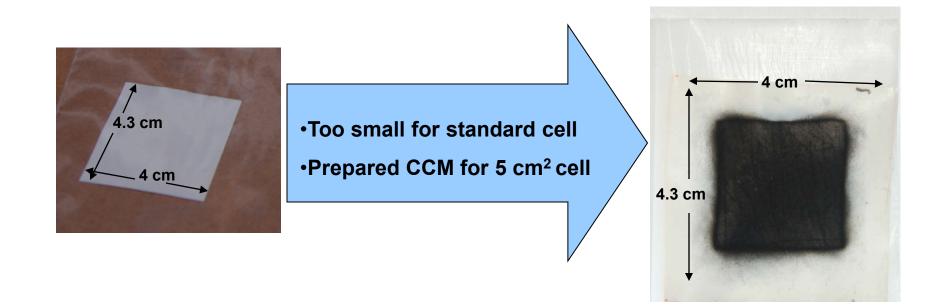
Giner Summary

- Membrane durability shows good progress towards meeting DOE targets
 - Fluoride emission reduced
 - Defects reduced
- Giner membrane performance shows good progress towards meeting DOE targets
 - Membranes are less than 30 μm
 - Low H₂ cross-over
 - High electrical resistance

Accomplishments Vanderbilt Membranes

High protonic conductivity

Low cross-over


Low electrical conductivity

Easily fabricated into an MEA


Good CCM performance

Good durability

Accomplishments CCM Manufacture

VU Stability & Defect Formation

Cell Inlet Active Area Min = 67.0 Cell Outlet Cell O

E2 Cross-over \approx 0 mA/cm² at end of test. No significant defects present.

- Completed test protocol with second membrane
- Low cross-over should lead to good durability
- Few defects observed after testing

Vanderbilt Summary

- Easily constructed MEA
- Excellent stability
- Low cross-over
- •Few cracks and pinholes

Collaborations – Within Program

- Case Western Reserve university
 - Supply membranes for MEA manufacture
- Giner Electrochemical Systems, LLC industry
 - Supply membranes for MEA manufacture
- FuelCell Energy industry
 - Supply membranes for MEA manufacture
- Colorado School of Mines university
 - Supply membranes for MEA manufacture
- Vanderbilt University university
 - Supply membranes for MEA manufacture
- *3M industry*
 - Supply ionomer for program
- Scribner Associates industry
 - Subcontractor for through-plane and in-plane conductivity

Proposed Future Work

- Continue to support teams
 - Prepare FCE MEA using newest membrane with optimized electrode
 - Validate CWR performance in 25 cm² cell at standard conditions
 - Prepare and test 25 cm² MEAS for Vanderbilt
 - Improve performance on Giner MEAs while maintaining high durability
- Examine membrane /electrode interface
 - Study interfacial resistance
 - Examine CWR MEAs by SEM to determine degree of contact between membrane and GDE
 - Decrease interfacial resistance of CWR MEAs by alternative electrode application methods
 - Focus on interfacial resistance for MEAs made with FCE ionomers Understand interfacial resistance for MEAs made with 3M ionomer and with Team member's ionomer
 - Determine differences in swelling rates between team member membranes and Nafion[®]
- Investigate mechanical properties as a function of degradation

HTM Program Summary

- Eleven teams initially funded to develop high conductivity membranes
 - Six teams selected to continue after go/no-go
- Conductivity, stability and performance improved over course of program
 - Many membranes show promise and should be pursued
- Improving one parameter may cause decrease in another
- Collaboration between FSEC and Teams guided CCM development
 - Excellent model for future DOE membrane development programs