

High Temperature Membrane with Humidification-Independent Cluster Structure

Ludwig Lipp FuelCell Energy, Inc. May 18th, 2012

Project ID # fc040

Overview

Timeline

- Project start date: Jun 2006
- Project end date: Aug 2012
- Percent complete: 96%

Budget

- Total project funding
 - DOE share: \$1500k
 - Cost share: \$600k
- Funding received in FY11: \$168k
- Planned Funding for FY12: \$65k

Barriers

- A. Durability: Membrane and MEA durability
- C. Performance: High MEA performance at low RH & high T

Partners

- Univ. of Central Florida
 - Membrane characterization, MEA fabrication & evaluation
- Oak Ridge National Lab
 - Membrane and additive microstructural characterization
- Polymer Partner
 - Polymer & membrane fabrication & characterization
- Additive Partners
 - Additives synthesis & characterization
- Consultants
 - Polymer, additives

Relevance

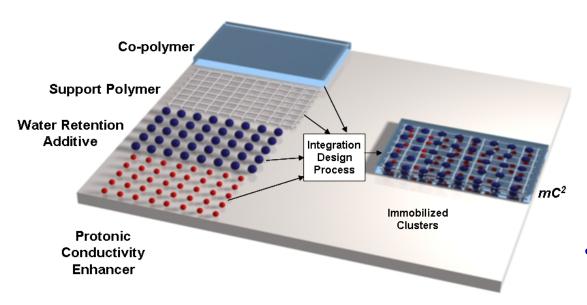
Overall Objective:

Develop membranes that meet the DOE performance, life and cost targets, including improved conductivity and area specific resistance at up to 120°C and low relative humidity (25-50%).

Relevance

Development Objectives for Composite Membrane:

- Develop improved membrane polymer
- Develop membrane additives with high water retention (nano-zeolites)
- Develop membrane additives with high proton conductivity (superacids)
- Fabricate composite membranes (polymer + additives = mC²)
- Characterize polymer, additives and composite membranes
- Scale-up considerations for cost reduction strategy
- Fabricate MEAs using promising membranes and characterize



Approach

Target Parameter	DOE Target (2017)	Approach		
Area specific proton resistance at:		Multi-component composite		
120»Ô and 40-80 kPa water partial pressure	$0.02~\Omega~\text{cm}^2$	structure, lower EW, additives with highly mobile protons		
80°C and 25-45 kPa water partial pressure	$0.02~\Omega~\text{cm}^2$	Higher number of functional groups		
Hydrogen and oxygen cross-over at 1 atm	2 mA/cm ²	Higher molecular weight polymer for stronger membrane structure		
Minimum electrical resistance	$1000~\Omega~cm^2$	Improved membrane thickness tolerance and additive dispersion		
Cost	20 \$/m ²	Simplify polymer processing		
Performance @ 0.8 V (1/4 rated power)	300 mA/cm ²	MEA with matching polymer in membrane and electrodes		
Performance @ rated power	1,000 mW/cm ²	Optimized ionomer content in electrodes		

Approach: mC² Concept

Improvements Made:

- Lower EW (850 → 800-650)
 - Higher Molecular Wt.
- Chemically stabilized polymer
- Smaller particle size (>80
 → 30 nm)
- Increased proton density
 (1 → 2 mobile protons per molecule) and lower cost

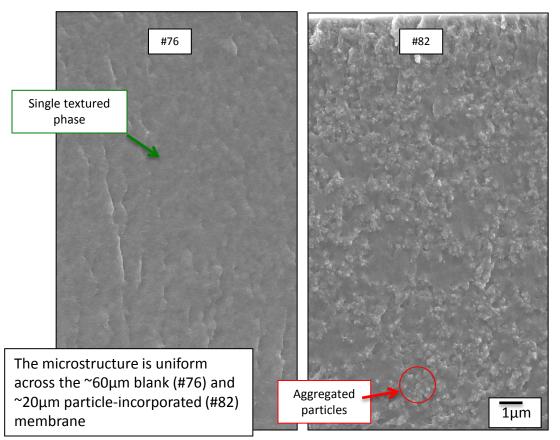
Multi-Component Composite Membrane (mC²) with Functionalized Additives

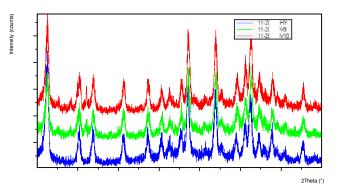
Major Accomplishments

- High protonic conductivity 0.113 S/cm* (DOE Target: >0.1 S/cm)
- Low cross-over 0.3 mA/cm² * (DOE Target: <2 mA/cm²)
- Low electrical conductivity (high electrical resistance)
 - $-2,860 \Omega cm^2 * (DOE Target: >1000 Ωcm^2)$
- Transferred MEA Fabrication Technology to UCF
 - Easily fabricated into an MEA (in UCF's Experience)
- Good CCM performance 1247 mW/cm² at rated power* (DOE Target: >1000 mW/cm²)
- Good durability in UCF 11-day test protocol

* UCF Data

Accomplishments: Risk Resolution

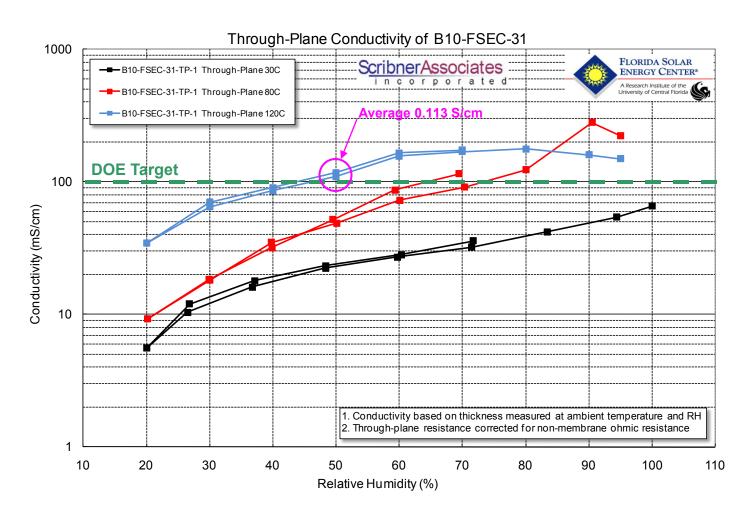

Issues	Resolution		
Produce Stable Nanozeolites	Completed		
Produce Nanozeolite Superacid Composites	Completed		
Produce mC ² /Polymer Composites	Completed		
Increase Production Capacity of Nanozeolite	Completed		
Decrease Cost of Superacids	Completed		
Demonstrate Improved Conductivity	Completed		
Demonstrate Reproducibility of Select Systems	Completed		
Identify Best Slurry Compositions, Casting Substrates and Treatment Conditions that give Improved Conductivity	Completed		
In-cell characterization and durability	In progress		


Accomplishments: IP Discoveries

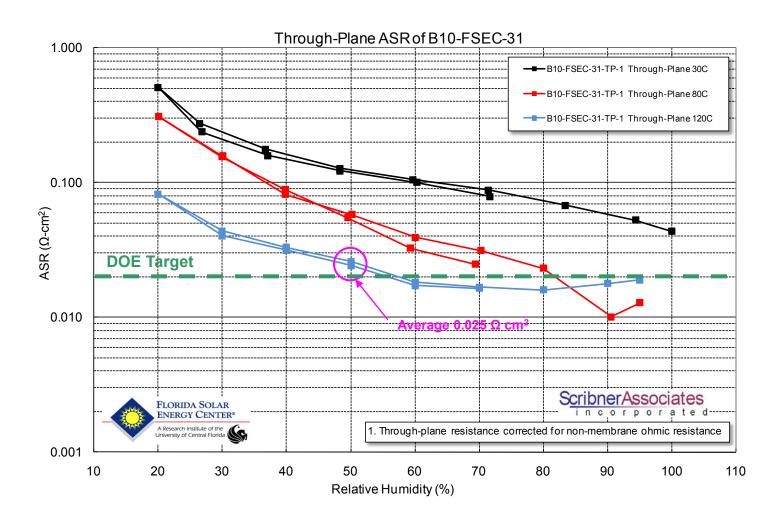
- The key factor to maintain nanoparticle zeolites indefinitely
- The adsorption of superacids on zeolite without affecting the zeolite structure
- The use of novel superacids in fuel cells
- The use of superacids adsorbed on zeolites in fuel cells
- The potential use of superacids adsorbed on zeolites as new H⁺ acid catalysts
- The key fact that casting solvents can reduce measured conductivities by an order of magnitude but can be removed by acid wash or time in high RH gas streams

Accomplishments: mC² Characterization

Relatively homogeneous dispersion of aggregated particles are observed in the membrane (#82) with a higher loading. The aggregated particles may have achieved a continuous 3-dimensional network.

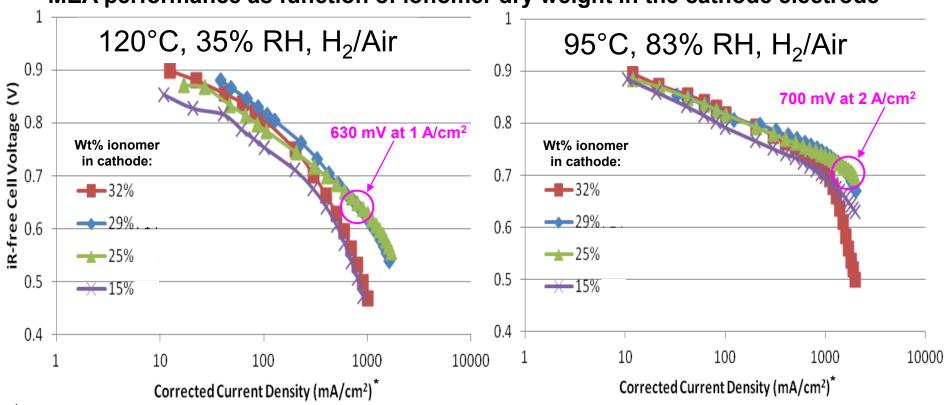

Nano-zeolite structure remains intact after superacid deposition

Achieved good distribution of additives in mC²


Accomplishments: mC² Conductivity

Conductivity Milestone at 120°C has been Independently Validated

Accomplishments: Area Specific Resistance



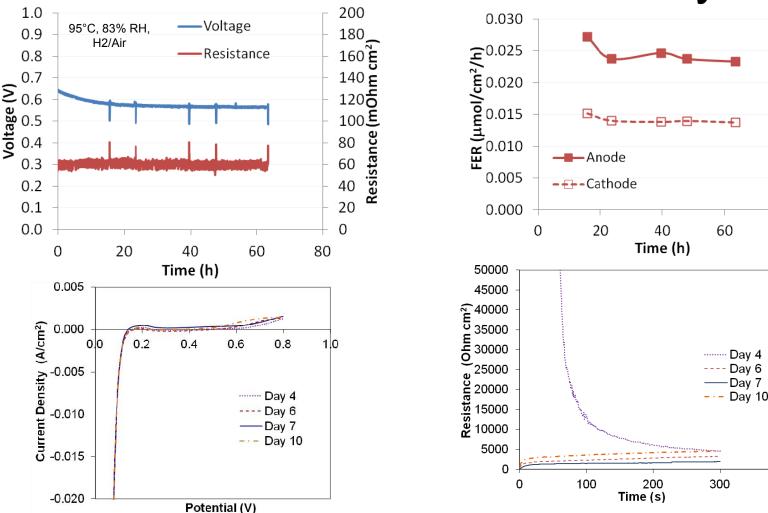
ASR almost meets the DOE target at 120°C and 50% RH

Accomplishments: Electrode Improvements

MEA performance as function of ionomer dry weight in the cathode electrode

^{*} Corrected for Crossover H₂: Limiting current density in the Linear Sweep Voltammogram was deducted from the measured current densities in the polarization curves to isolate the effect of ionomer content in the cathode.

- mC² Required Re-optimization of the MEA
- Achieved High Performance at High Temp. and High Current Density


Accomplishments: mC² to MEA Development

Electrode Improvements Led to Higher Power

Accomplishments: mC² Performance Stability

400

80

Accomplishments: MEA Comparison to DOE Targets

Characteristic	Units	Target 2017	B2	В3	B5	В7	В9	B10	NRE 211
Area specific proton resistance ^c at:									
120°C and 40 - 80 kPa pH ₂ O	Ohm cm ²	≤ 0.02	0.08*	0.08*	0.064*	0.23*	0.110*	0.025*	0.15*
80°C and 25 - 45 kPa pH ₂ O	Ohm cm ²	≤ 0.02	0.02‡	0.02‡	0.016 [‡]	0.05 [‡]	0.045 [‡]	0.056 [‡]	0.02 [‡]
Maximum Hydrogen cross-over ^a	mA / cm ²	2	1	0.95	1.6	0.48	<0.4	0.3	0.76
Minimum electrical resistance b	Ohm cm ²	1000	1200	800	417	500	2,860	1,836	2100
Performance @ 0.8V (1/4 Power)	mA/cm ²	300	104	177	209	150	137	206	113
Performance @ rated power	mW/cm ²	1000	334	567	1239	482	577	1247	363

^{*}Measured at 120°C and 70 kPa water partial pressure

- a. Measure in humidified H_2/N_2 at 25°C
- b. Measure in humidified H₂/N₂ using LSV curve from 0.4 to 0.6 V at 80°C
- c. Determined by subtracting contact resistances from cell current interrupt values

Most targets met, good progress towards remaining targets

[‡]Measured at 80°C and 38 kPa water partial pressure

Collaborations

Prime

- FuelCell Energy, Inc. (Industry):
 - Leading fuel cell developer for over 40 years

Partners

- University of Central Florida (University):
 - Membrane characterization, MEA fabrication & evaluation
- Scribner Associates, Inc. and BekkTech LLC (Industry):
 - Membrane through-plane and in-plane conductivity
- Oak Ridge National Lab (Federal Laboratory):
 - Membrane and additive microstructural and chemical characterization
- Polymer Company (Industry):
 - Polymer and membrane fabrication, initial characterization
- Additive Partners (Industry/University):
 - Additives synthesis, functionalization and characterization
- LGC Consultant LLC (Industry):
 - Additive synthesis and integration into mC²

Collaborations: Team Efforts

- Polymer: Synthesized >20 batches of polymer and ionomer dispersion
- Water-retaining Additive: Synthesized and purified >30 batches of nanozeolite
- Protonic Conductivity Enhancer: Synthesized >5 batches of 1 and 2proton molecules
- Functionalized Additive: Fabricated 3 batches of Protonic Conductivity
 Enhancer deposited on Water-retaining Additive
- Membrane and mC² Fabrication: >15 batches of polymer membrane film and >30 batches of mC² membrane film
- Microstructural Characterization: ORNL characterized >10 membrane samples and >10 additive samples
- MEA: UCF fabricated 13 MEAs
- Cell Testing: >30 cells tested, including 12 cells at UCF

Proposed Future Work

- Durability: Characterization of mC² mechanical and chemical stability per DOE protocols (UCF – funding permitting)
- Complete invention disclosure
- Complete final report

Progress Summary

- Developed technology to synthesize mC² components and to integrate them
- Membrane exceeds DOE 120°C conductivity target at 50% RH and approaches ASR target
- Developed MEA fabrication process with UCF that is compatible with mC²
- Preliminary optimization of ionomer content in cathode led to good 120°C MEA performance of 510 mV at 1 A/cm², 35% RH (UCF)
- At near-term target of 95°C: 585 mV at 2 A/cm², 83% RH (UCF)
- Cell data exceeds DOE power density target (UCF)

Project Summary Table

Characteristic	Units	DOE 2017 Target	FY11-12 Result
Area specific proton resistance ^c at:			
120°C and 40-80 kPa water partial pressure	Ohm cm ²	≤ 0.02	0.025
80°C and 25-45 kPa water partial pressure	Ohm cm ²	≤ 0.02	0.016√
Maximum Hydrogen cross-over ^a	mA / cm ²	2	0.3 ✓
Minimum electrical resistance b	Ohm cm ²	1000	2,860 ✓
Performance @ 0.8V (1/4 Power)	mA / cm ²	300	209
Performance @ rated power	mW / cm ²	1000	1247 ✓

^{*}Values are at 80°C unless otherwise noted

- a. Measure in humidified H₂/N₂ at 25°C
- b. Measure in humidified H₂/N₂ using LSV curve from 0.4 to 0.6 V at 80°C
- c. Determined by subtracting contact resistances from cell current interrupt values

Acknowledgements

- DOE: Donna Ho, Greg Kleen, Tom Benjamin, Kathi Martin, Jason Marcinkoski, Amy Manheim, Reg Tyler and John Kopasz
- UCF: Jim Fenton, Darlene Slattery, Marianne Rodgers, Paul Brooker,
 Nahid Mohajeri, Len Bonville, Russ Kunz (Testing protocols, membrane and MEA evaluation)
- Scribner Associates, Inc.: Kevin Cooper (Conductivity measurements)
- BekkTech LLC: Tim Bekkedahl (In-plane conductivity)
- ORNL: Kelly Perry, Karren More (Microstructural characterization)
- FCE Team: Pinakin Patel, Ray Kopp, Jonathan Malwitz, Chao-Yi Yuh,
 Nikhil Jalani, Adam Franco, Al Tealdi