2012 U.S. DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting May 14-18, 2012, Washington, D.C.

Resonance-Stabilized Anion Exchange Polymer Electrolytes

Yu Seung Kim (yskim@lanl.gov)

Los Alamos National Laboratory Los Alamos, NM, 87545

Project ID: FC043

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

	_			
Project start	September	2009	Project lead	
Project end	March	2012	Los Alamos National Laboratory	
Percent complete	e 100%		Yu Seung Kim (PI)	
a. Polymer & iono	omer synthesis	(100%)	Dae Sik Kim • Los Alamos	
h Catalyst prepar	ration	(100%)	Hoon Jung	
c. MEA processing	g & testing	(100%)	Subcontractor	
d. Degradation st	udy	(100%)	Sandia National Laboratory	
Βι	udget		Cy Fujiomoto (Ext. PI) Michael Hibbs	
Total funding	\$ 1,320 K		Jet Propulsion Laboratory	
Funding for FY10	\$ 528 K		Charles Hays (Ext. PI)	
Funding for FY11	\$ 330 K		Daniel Konopka	
No cost shared			Michael Johnson	
No cost shared			Michael Errico Povan Bahrami	
Ba	rriers		Poyan Banrann	
P. Cost			Interactions	
D. COSL			Cellera Technologies (Shimpshon Gottesfel	
C. Electrode performance			Advanced Industrial Science and Technolo	
A. Durability			(Yoong-Kee Choe)	

Objectives

Demonstrate an improved alkaline membrane fuel cell (AMFC) performance and durability using advanced polymer electrolyte membranes, ionomers and non-precious catalysts				
Major tasks				
General FY 09 & 10:	Synthesis of anion exchange membranes and ionomers			
FY 10 & 11 :	Characterization of catalyst and AMFC performance			
□ FY 11 & 12:	AMFC durability test and durability mechanism			

Technical Barriers, Targets and Results

ISSUES	Technical Barriers	Technical Target ^a	FY 09-10	FY 10-11	FY 11-12	Result
Membrane	Conductivity Stability Tensile properties	σ: > 50 mS/cm > 500 h in NaOH soln. 60°C Stress: > 10 MPa, Strain : > 10%	√ × ×	√ √ ×	\checkmark \checkmark	120 mS/cm 672 h 25 MPa, 30%
lonomer	Backbone structure Conductivity Stability	Perfluorinated > 50 mS/cm → 20 mS/cm ^b > 500 h in NaOH soln.	√ ×	$\sqrt{1}$	√ √ ×	M-Nafion [®] -FA-TMG 20 mS/cm 7% after 72 h
Catalyst	Element ORR activity	Non-precious metal or carbon > 0.9 V (E _{1/2})	-	$\sqrt{1}$	$\sqrt{1}$	CNT/CNP cat. 0.95 V (E _{1/2})
AMFC per- formance	Maximum power Durability	> 200 mW/cm ² in H ₂ /Air < 10% for 800 h	-	√	√ ×	466 mW/cm ² ~50% for 300 h ^c

^a Values in the original proposal

^b Conductivity target for ionomer was lowered as we achieved MEA performance target with low conductive ionomers

^c Mostly due to the cation stability and water management issue; ionomer and polymer backbone degradation is negligible

Synthesis of Polyaromatic Anion Exchange Membranes for Durability Study

- High molecular weight polyaromatic AEMs were prepared
- Mechanical properties of the AEMs are strongly influenced
- by chemical structure and molecular weight Highlight: Stress: > 25 MPa & Elongation: > 30% at 50% RH

Membrane mechanical milestone (> 10 MPa stress & 10% strain) achieved with F-PAE, NF-PAE and ATM-PP 3

ter ion (g/mol) (meq./g) (wt.%) **F-PAE** Cl-150 2.5 99 **NF-PAES** 2.2 Br⁻ 87 43 ATM-PP1 Br⁻ 61 1.7 72 ATM-PP 2 77 Br⁻ 1.6 64 ATM-PP 3 Br⁻ 196 1.7 70 ^a measured by GPC using the parent polymers ^b measured at 80°C using salt form membranes

AL LABORATORY 2012 US DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review

(mS/cm)

46

15

30

35

37

Aryl-Ether Cleavage of Poly(arylene ether) AEMs*

Membrane treatment

a: 0.5 M HCl (or HBr) for 30 min (or 2 h);
c: 0.5 M NaOH for 30 min, room temp. after a
e: 0.5 M HCl (or HBr) for 30 min (or 2 h) after d
g: 0.1 M NaOH for 2 h & 0.5 M NaOH for 100 h at 80° C

b: 0.1 M NaOH for 1 h, room temp. after a;
d: 0.5 M NaOH for 1 h, 80°C after a
f: 0.5 M NaOH for 1 h 80°C after e

ATORY 2012 US DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review

Polymer Degradation

Impact of Polymer Structure on AMFC Performance*

Membrane: fluorinated poly(arylene ether) AEM (F-PAE, LANL) and poly(phenylene)-based AEMs with three different molecular weight (ATM-PP, SNL); **Test conditions**: H_2/O_2 at 80 °C

Membrane: F-PAE and ATM-PP 3; Test conditions: H₂/O₂ at constant voltage of 0.3 V, at 80 $^{\circ}$ C

Effect of molecular weight on AMFC performance

Sample	F-PAE	ATM-PP1	ATM-PP 2	ATM-PP 3
M _w ×10 ³ ° (g/mol)	150	61	77	196
HFR (Ω cm²)	0.23	1.67	1.23	0.21

^a measured by GPC using the parent polymers

- The AEMs having low Mw (ca. < 100 K) showed poor AMFC performance</p> due to the possible interfacial failure during MEA processing
- Negligible interfacial issue for high Mw F-PAE and ATM-PP
- F-PAE MEA showed catastrophic failure at 55h probably due to the AEM degradation

Highlight: No catastrophic failure for ATM-PP 3 MEA during 300 h life test

Effect of backbone degradation#

[#] supporting information for analysis methodology

*C. Fujimoto et al. manuscript was submitted 2012

Stability of Perfluorinated Anion Exchange Ionomers

- Phenyl guanidinium has much better stability than sulfone guanidinium under high pH conditions
- Trace of degradation after the treatment for phenyl guanidinium functionalized perfluorinated ionomers is due to the hydrolysis of amide group rather than polymer backbone or cation degradation

Highlight: Stable perfluorinated ionomers were prepared by introducing electron donating spacer

Ionomer milestone (perfluorinated ionomer with conductivity > 20 mS/cm and stability) achieved

Stability of Benzyl Tetramethyl Ammonium Cations (ex-situ)

Membrane: poly(phenylene) based AEM (ATM-PP, SNL) and crosslinked polystyrene based AEM (AHA, Tokuyama) (cf. PAE based AEMs became too brittle to handle after 1-2 days); **Test conditions**: 4 M NaOH (aqueous), no stirring; IEC measured with back titration **Membrane:** Poly(phenylene) based AEM (ATM-PP, SNL) and poly(arylene ether) based AEM (F-PAE, LANL); **Test procedures**: 1st step: AEMs were prepared in their salt forms and were immersed in 0.1 M NaOH at 80°C for 10, 30, 60 and 120 min and followed by rinsing those in boiling water for 1 h to remove any residual NaOH; 2nd step: AEMs were immersed in 0.5 M NaOH solution at 80°C for various time intervals

- Benzyl tetramethyl ammonium (BTMA) is stable at 60°C; However, ~ 10 % IEC loss after 9 days at 90°C was observed under high pH conditions
- Anion conductivity loss of BTMA functionalized F-PAE and ATM-PP 3 was observed at 0.5 M NaOH at 80°C over 100 h
- Polymer backbone degradation has a little impact on conductivity
- Comparing the ether cleavage degradation of PAEs, the BTMA cation degradation was much slower

*C. Fujimoto et al. manuscript was submitted 2012

ORR study: under O_2 sparging with anodic and cathodic scans at a rate of 1 mV/s, between a potential range of 1.0 V to ~ 0.2 V; A separate set of scans between 1.0 and 0.8 V for the kinetically limited region

CV Cycling: 0.0 to 1.1 V RHE (clockwise cycles) in 0.1 M TMG purged with sparging and blanketing Ar gas; Durability test 2 L of 0.1 M TMG was mixed and allowed to sit in open air for 2 months

- Tetramethylguanidine (TMG) showed electro-catalytic activity; The current at 0.9 V is similar to conventional KOH electrolytes but is less favorable at lower potential due to the probable adsorption to the Pt surface
- TMG and its byproducts can adsorb onto the Pt surface below ~0.8 V, obscuring the transition between typical kinetic and mass-limiting regions during oxygen reduction; This effect is especially pronounced at low rpm (low oxygen concentrations)

Highlight: The TMG electrolyte showed remarkable stability after two months, with some signs of increasing resistivity such as the positive potential shift of the H-desorption peak

*D. Konopka et al. *Electrochem. Solid-State Lett*, **15**, B17 (2012)

The relative areas of **b** and **c** peaks decrease drastically after NaOH. But b to c area ratio does not change

Benzylpentamethyl guanidinium was slowly decomposed while phenylpentamethyl guanidinium was stable under high pH conditions and elevated temperatures

Highlight: Phenylpentamethyl guanidinium was stable at 4 M NaOH, 90°C for 72 h

*M. Hibbs, C. Fujimoto, T. Lambert, D.S. Kim, Y.S. Kim, NAMS 2011, June 6, 2011

a

с b

DDM

2012 US DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review ABORATORY

Phenyl-guanidinium (Addition + Carbonyl formation)

- Alpha carbon in benzyl-guanidinium is weak site due to the nucelophilic substitution. Also hydrogen on the alpha carbon is very acidic
- Activation energies of center carbon of benzyl and phenyl guanidinium for addition and carbonyl formation are similar Next: The stability comparison with benzyl tetraalkyl ammonium is under investigation at AIST

*Yoong-Kee Choe, unpublished results, AIST

NAL LABORATORY 2012 US DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review

Cation Degradation

Stability Comparison BTMA vs. Phenyl Guanidinium (in-situ)

IEC

(meq./g)

1.0

2.4

WU

(wt.%)

10

85

σ

(mS/cm)

35

100

Membrane: Benzyl tetramethyl ammonium functionalized poly(phenylene) (ATM-PP 3, 50 μ m thick); Catalyst: Pt black (3 mg/cm²) for anode and cathode; Ionomer for catalyst layer: M-PAES-TMG and F-PAE; testing conditions: H₂/O₂ at 60 °C; Durability test: Constant voltage of 0.3 V for 300 h

Durability of ionomer (phenyl guanidinium vs. benzyl ammonium)

- The stability of phenylpentamethyl guanidinium and benzyltetramethyl ammonium functionalized PAEs were compared when used as ionomer in the catalyst layer
- Spectroscopic results indicated that central carbon of pentamethyl guanidinium is the weakest site which is consistent with quantum chemical modeling

Highlight: Phenyl guanidinium cation was substantially more stable than BTMA after 300 h durability test (2 vs. 69 µV/dec h)

Sample

M-PAES-TMG

F-PAE

RDE: E-TEK Pt/C, Pt loading: 60 µg cm⁻²; N-M-C, 1.0 mg cm⁻²; 0.1 M NaOH; 900 rpm; room temperature; Ag/AgCl (3 M NaCl) reference electrode; steady-state potential program (OCP for 120 s first, then 20 mV steps, 25 s/step); Cycling: 0.6 -1.0 V, 50 mV s⁻¹, O₂-saturated solution

Cycling stability in 0.1 M NaOH

Morphology and ORR activity of CNT/CNP catalyst

- Novel CNT/CNP composite catalyst was prepared from nitrogen containing compound and carbon black
- Both Pt and CNT/CNP catalyst showed excellent stability under high pH conditions up to after 10,000 potential cycles
- The CNT/CNP showed high activity after 5,000 potential cycles (*ca.* $E_{1/2} = 0.95 V$)

Highlight: Durability of electro-catalyst is no issue and the electrochemical activity of CNT/CNP catalyst is excellent

Catalyst ORR activity milestone ($E_{1/2} > 0.9$ V) achieved

Materials for MEA fabrication

H₂/O₂ AMFC Performance

Membrane: BTMA functionalized poly(phenylene) (ATM-PP 3, 50 µm thick); **Catalyst**: Pt black (3 mg/cm²) for anode and cathode; **Ionomer** for catalyst layer: M-Nafion-FA-TMG and ATM-PP 3

lonomer	IEC	WU	σa	HFR (ohm cm²)		Maximum Power density (mW/cm ²)	
	(meq./g) (wt.%) (mS/cm)	(mS/cm)	60°C	80°C	60°C	80°C	
ATM-PP 3	1.7	100	120	0.215	0.174	206	335
M-Nafion [®] -FA- TMG	0.7	10	20	0.165	0.134	306	577
						a l	

^a measured with hydroxide form at 80°C

- Membrane electrode assemblies for AMFC were prepared from LANL decal process using the AMFC materials
- The MEA using M-Nafion[®]-FA-TMG showed superior performance to the MEA using ATM-PP 3

Highlight: Maximum power density reached to 577 mW/cm² at 80°C under H_2/O_2 conditions

High AMFC performance using hydrocarbon AEM and resonance stabilized perfluorinated ionomer was demonstrated

H₂/Air AMFC Performance

Membrane: BTMA functionalized poly(phenylene) (ATM-PP 3, 50 µm thick); Catalyst: Pt black (3 mg/cm²) for anode and cathode; lonomer for catalyst layer: M-Nafion®-FA-TMG

- H₂/CO₂ free air AMFC performance showed excellent performance
- Additional loss for H₂/normal air (CO₂ = 390 ppm) conditions was observed; The performance loss was significant at low current region, indicating some water management problems possibly due to the bicarbonate/carbonate issue at lower current density. Further study for the performance loss is required

Highlight: Maximum power density reached to 466 mW/cm² at 80°C under H₂/CO₂ free Air conditions

Membrane: BTMA functionalized poly(phenylene) (ATM-PP 3, 50 µm thick); **Catalyst**: Pt black (3 mg/cm²) for anode and cathode; **Ionomer** for catalyst layer: M-Nafion®-FA-TMG; Life test conditions: constant voltage under full hydration

- The AMFC performance degradation depends on cell operating conditions; Large portion of current loss at low voltage conditions is due to water management issue which is recoverable loss.* However, HFR increase mostly reflects the AEM degradation
- AEM degradation rate increased with decreasing cell voltage and increasing operating temperature

AMFC Degradation Summary

	-		
Compo- nent	Туре	Degradation* (time, NaOH, Temp.)	Slide page
	Poly(arylene ether) Aryl ether linkage	Fast (g) (< 1 h, 0.5M, 80°C)	5
Polymer	Poly(phenylene)	Stable	5
	Perfluorinated	Stable	7
	Amide linkage	Slow (g) (72h, 0.5M, 80°C)	7
Cation	Tetramethyl guanidine aqueous soln.	Slow (<i>g</i>) (2 month, TMG 0.1 M, 25°C)	9
	Benzyl tetra methylammonium	Slow (g) (< 100 h, 0.5 M, 80°C)	8
	Sulfone penta methyl guanidinium	Fast (g) (< 1 h, 0.5 M, 80°C)	7
	Benzyl penta methyl guanidinium	Moderate (g) (24 h 1M, 25°C)	10
	Phenyl penta methyl guanidinium	Stable	10
Electro-	Platinum/carbon	Stable	13
catalyst	CNT/CNP	Stable	13

Ex-situ testing in NaOH aqueous solution

In-situ AMFC testing

Component	Туре	Degradation (time, Temp.)	Slide page
Polymer	Poly(arylene ether)	Moderate (<i>c</i>) (55h, 80°C)	6
	Poly(phenylene)	Stable	6
	Benzyl tetramethyl ammonium (AEM)	moderate (<i>g</i>) (100h, 80°C)	16
Cation	Benzyl tetramethyl ammonium (ionomer)	Slow (g) (< 100h, 80°C)	12
	Phenyl pentamethyl guanidinium (ionomer)	Slow (g) (72h, 90°C)	12
AEM-electrode	AEM with Mw < 100 K	Unstable (<i>c</i>)	6
interface	AEM with Mw > 100 K	Stable	6
Electro-catalyst	Platinum/carbon	Stable	13
	CNT/CNP	Stable	13
Water	Hydrocarbon ionomer	Fast (g)	S
management*	Perfluorinated ionomer	Moderate (g)	_

*g: gradual loss; c: catastrophic loss

In general, the degradation rate of AMFC materials was faster under *ex-situ* conditions than under *in-situ* test; however other degradations such as membrane-electrode interface or water management issue played greater role in *in-situ* AMFC testing

Highlight: Materials developed from this project (appeared in yellow box) showed at least comparable durability to the state-of-the-art AMFC materials

Relevance: Alkaline membrane fuel cells may enable non-precious metal catalysts and avoid or mitigate the shortcomings of traditional liquid AFCs

Approach: Develop highly stable and conductive anion exchange polymer electrolytes using resonance stabilized guanidinium cations and perfluorinated ionomer

Technical Accomplishments and Progress:

Demonstrated good H_2/O_2 and H_2/air AMFC performance (> 450 and 550 mW/cm², respectively) at 80°C

Established several synthetic pathways to prepare stable anion exchange polymer electrolytes and carbon based non-precious metal catalysts

Explored degradation phenomena for polymer backbones, cations and ionomers and ranked the stability both under *ex-situ* and *in-situ* conditions

Technology Transfer/Collaborations: Active partnership with Ovonic Fuel Cells and Cellera Inc.; Several patent applications were filed for technology transfer

Proposed Future Research: Catalyst-ionomer interaction and further improvement on stability, conductivity and mechanical properties of polymer electrolytes

Technical Back-Up Slides

2012 US DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review

Decoupling Degradation from *in-situ* AMFC testing

