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Timeline

= Start Date: January 2010
= End Date: March 2013

= Percent Complete: 69%

Barriers

A. Durability

e Pt/carbon-supports/catalyst
layer

B. Performance
C. Cost (indirect)

Budget

= Total Project: $6,010,181
e $4,672,851 DOE + FFDRC
e $1,337,330 Ballard

= DOE FY11 Funding: $1385K

= Planned FY12 Funding: $1200K

Project Partners
= Georgia Institute of Technology
= Los Alamos National Laboratory

= Michigan Technological
University

= Queen’s University
= University of New Mexico

BALLARD

Smarter Solutions for a Clean Energy Future

2 16 May 2012




Relevance and Objective

= Objective
o Identify/Verify Catalyst Degradation Mechanisms
» Pt dissolution, transport/ plating, carbon-support oxidation and
corrosion, and ionomeric thinning and conductivity loss
» Mechanism coupling, feedback, and acceleration
e Correlate Catalyst Performance & Structural Changes
» Catalyst layer morphology and composition; operational conditions
» Gas diffusion layer properties
e Develop Kinetic and Material Models for Aging
» Macro-level unit cell degradation model, micro-scale catalyst layer
degradation model, molecular dynamics degradation model of the
platinum/carbon/ionomer interface
e Develop Durability Windows
» Operational conditions, component structural morphologies and
compositions
= Impact
e Increasing catalyst durability
» Based on understanding of the effect of structure and operating
conditions
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Technical Targets/Barriers

Table 3.4.13 Technical Targets: Electrocatalysts for Transportation Applications

Targets
Characteristic Units 2011 Status
2017 2020
. 2
FPlatinum .gr::lup metal (pgm) | mg PGM / cm” electrode 0.15° 0.125 0125
total loading area
Iégtsi:iti;cinitial catalytic % mass activity loss 48" <40 =40
E,[I:E;[IEE atalyst support % mass activity loss <10° =10 =10
Mass activity® A/ mg Pt @ 900 mVig free 0.24" 0.44 0.44

Ref: http://www1l.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf

= 2020 Durability Targets
e Automotive Drive Cycle: 5000 hours

¢ Mass activity loss after triangle sweep
cycles at 50 mV/s between 0.6 V and

| 1.0V at 80°C, 100% RH e CHP and Distributed Generation
Mass activity loss after 1.2V hold in _ .
H./0, at 805C, 100% RH »1 - 10kW,: 60,000 hours

e MEA test at 80°C, 100% RH in H/O, > 100 kW - 3MW: 80,000 hours

BALLARD Smarter Solutions for a Clean Energy Future 4 16 May 2012



Approach

= Model Development
e 3 scale modeling approach
» Molecular dynamics model of the Pt/ carbon/ionomer interface, Pt dissolution and
transport process
» Microstructural catalyst layer model to simulate the effect of local operational
conditions and effective properties on performance and degradation
» Unit cell model predicting BOL performance and voltage degradation
= Experimental Investigations/Characterization
e Systematic evaluation of performance loss, catalyst layer structural and
compositional changes of different catalyst layer structures/compositions
under a variety of operational conditions
» Carbon support type, Pt/C ratio, ionomer content, ionomer EW, catalyst loading
> Potential, RH, O, partial pressure, temperature
» Accelerated stress tests (ASTs) combined with in-situ/ex-situ techniques
» Performance loss breakdown to determine component contribution
» In-situ/ex-situ characterization to quantify effect of electrode structure and
composition on performance and durability

= Develop Durability Windows

e Operational conditions, component structural morphologies and compositions

= DOE Working Groups (Durability and Modeling)
e Interaction and data exchange with other projects
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Approach Schematic
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Milestones & Timeline

FY 2011 to 2013

Unit Cell Improved BOL Catalyst Layer Transient Catalyst Unit Cell Integrated
Performance Catalyst Micro- Capillary Micro-structure Degradation Unit Cell
Model structure Model Pressure Tool Degradation Model Model Degradation Model

Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13
2010Q4 | 2011Q1 | 2011Q2 | 2011Q3 | 2011Q4 | 2012Q1 | 2012Q2 2012Q3 | 2012Q4 | 2013 Q1

Molec.-Dyn. Model || Methodology for || Operational || Structural Coupled Mitigation
of Pt/ C /lonomer || Quantification of Design Design Op. & Struct. Wir?dows
Interface C Corrosion Curves Curves Effects
Y Go/No-Go Decision Point O Modeling Milestones

O Correlations Development Milestones
O Tools/Methodology Development Milestones

Go/No-Go Decision Point (completed 30 June 2011)

= Validation of statistically generated BOL UC-Model
performance curves against experimental results

e Model predictions are within the 95% statistical variability of
the experimental data for the baseline MEA at standard
conditions

BALLARD



2011 /2012 Milestones

Molecular Dynamics Model
v’ Completion of Pt/C/ionomer
interface
e Molecular modeling of Pt
dissolution
Micro-structural Model
e Completion of two-phase flow
implementation
e Simulation of effective properties
and performance with liquid water
1D-MEA Model
e Pt Dissolution, agglomeration
v * Validation of statistical 1D-MEA

model with experiment
» Go/No-Go decision June 30, 2011

v e Integration of electrical contact
resistance model
v’ e Implementation of Multi-step ORR

Experimental Investigations
e Carbon Types
v~ » Investigate lower upper voltage
limits
v > Correlate degradation with
material properties
v’ e Tonomer equivalent weight
v’ Pt/C ratio study
¢ Carbon corrosion (potential
hold) study
Material Characterization
v'* GDL wettability and capillary
pressure
e Interface characterization
e Property changes of aged
GDLs and catalyst layers

v'= Completed <>= In progress/on target

Smarter Solutions for a Clean Energy Future
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. Accomplishments

Modeling Status
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Molecular Dynamics Model
Three Phase Interface Model

= Calculated species
coverage of bare and
oxide covered platinum

lonomer

water

Sulfonate (160) e Determined active and
inactive surface moieties
0O, (~ 30 out of 180)
2 (H,0, H3;0*, O,, SO5,

and polymer)
= O, prefers polymer
phase over H,O

= SO; interacts strongly
with Pt/PtO

Graphite e SO; is well solvated by
the water phase despite
being connected to the
hydrophobic chain

H,0* (160)

Pt

= Improved understanding of three-phase interface (coverages vs. ECSA)
e Correction factor for ECSA estimation in micro-structural model

= Interaction between PtO, SO;, and H,O is important to understand
dissolution ,



http://upload.wikimedia.org/wikipedia/en/6/60/Georgia-Tech-Insignia.svg

Unit Cell Model Development

Scripting and Statistical Input Options

.| Mesh
A Geometry = heration
User Parametric Post
" Setup Performance " Processing
TMaterial | Solver
LK | Modules
Properties
: T Degradation
T Transport Physics
Physics
Electrochemistry

= Model was separated into modular parts
e User inputs, transport properties, and physics
e Statistical variation
> User inputs (material constants or operational conditions)
» Transport properties (effective properties vs. composition of porous media)
= Effective transport properties from micro-structural models
o Catalyst layer (gas diffusivity, thermal conductivity)
e Gas diffusion layer (gas diffusivity, permeability, thermal conductivity)
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Unit Cell BOL Model

Validation (Baseline MEA, Standard Conditions)

—Model Average —Model Average
09 Slngle Phase --Model standard Deviation Two-Phase ::ﬁ::b:::::x
--Model Standard Deviation 0.8 : EX:eLﬁmenl;;;vmge
—~ * Experimental Average T + Experimental Upper 95%
3 L * Experimental Standard Deviation ; 0.6 e i
) « Experimental Standard Deviation ~ R feone
o)) 0.7- g, -
£ 2
g 0.6 === 3
05 R > 02
Added Liq. Water model
| | | | | > | | | |
“0 a0 40 60 a0 1000 1200 1400 1600 % 200 400 600 800 1000 1200 1400 1600 1800
Current density (mA/cm2) Current density (mA/cm2)

Statistical Model Inputs = Sample to sample variation created using a
Component Properties % Deviation (1 Std Dev) normally distributed, random population
Catalyst/Catalyst Layer —y = c c -

Thickness (microns) 8% = Initial model validation, single phase
Weight Ratios (%) e Predictions were within 1 standard deviation up
Pt:C +-1% 2
(Pt:C):lonomer +-1% to 1.0 A/Cm i i
Pt Loading [mg/cm”2] +-1.25% = Two-phase model validation
Pt size +/- 10% o A tel t ffect of i . t
Tafel Slope [mVided] fixed ccurately captures effect of increasing water
Jo [Alcm”2 pt] +- 10% content
GbL porosiy — e Experimental and model variation both increase
Tortuosity +/- 3% with current density due to “noise” factors
. bThickness (microns) +- 4% having increased effects on transport processes
embrane

Thickness (microns) +/- 2% h Experimental dataset of 20 MEAs




Accomplishments
Modelling/Experimental Results

Effect of Cathode Catalyst Structure /
Composition on Performance and
Degradation

= Pt Loading Study (Pt50-LSAC)
= Carbon Ratio Study (PtX-LSAC)

Reference MEA: 50:50 Pt/C, Nafion® ionomer, 0.4/0.1 mg/cm? (Cathode/anode), Ballard CCM,
Nafion® NR211, BMP GDLs

Ballard Test Cell: 1D, 45cm? active area
Reference AST: Air/H,, 100% RH, 5 psig, 80°C, 0.6 V (30 sec)~> 1.2V (60 sec), 4700 cycles
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Effect of Pt Loading

Catalyst Layer Structure (Experiment)
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e Relationships for macro-model
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Platinum Loading Study

BOT Performance (Experiment & Predicted)
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Platinum Loading Study

Effect of Water
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0.8

[=}]

[=}
'
PITM Ratio

0.0

= Saturation increases in low
loaded structures

e For low Pt loading max H,0
content is ~2x higher than
for high Pt loading

e Relationship between
saturation and diffusion
causes additional sensitivity
to O, transport at high water
contents

" Voltage loss increases with
increasing RH
e Similar performance loss for
RH > 100% (plateau in PITM,
Pt growth, and ECSA loss
= Pt dissolution decreases with
lower reactant RH (<100%)
e Decrease in PITM, Pt growth,
ECSA
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Effect of Pt Loading

Degradation - Pt Dissolution

—~ 100 0.10
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= Performance correlates to ECSA for BOT and -
degraded samples AL
= Degradation rate increases for <0.3 mg/cm?2 Pt SR  Csh 105
loading e

= Pt dissolution changes structure of catalyst layer

e Depletion of Pt at membrane interface, PITM,
increased Pt size, lower surface area

e No significant change in catalyst layer thickness

EOT
ECSA 75
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Carbon Corrosion Degradation

Impact of Dwell time
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Effect of Pt/C Ratio

BOT Catalyst Layer Structure
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Effect of Pt/C Ratio

BOT Performance (Experiment & Predicted)
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Effect of Pt/C Ratio

Degradation
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Voltage Degradation decreases with
increasing Pt/C Ratio

e Improved performance at higher current densities
after degradation cycling

% ECSA loss at EOT is similar for all Pt
ratios

e Each sample losing ~ 50% of the initial EPSA
BOT crystallite sizes increase with Pt/C
ratio
No electrode thickness changes (change is
within variation at BOL)
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Plan Forward

Model Development

= 1-D MEA Model

e Pt dissolution
> Linking platinum dissolution to multi-
step ORR (underway)
> Pt-dissolution, agglomeration,
formation of PITM (underway)

e Carbon support oxidation/ corrosion
» 2-stage pathway
e Validation with AST cycling
e Correlations and development of
design windows
= Micro-structural Catalyst Model
e Mass transport limitations and low
loaded catalysts
e Platinum dissolution, Carbon
corrosion
= Molecular Dynamics Model
e Platinum dissolution within 3-phase
interface
e Transport of Pt"* within membrane
phase

Experimental Investigations
= Complete operational studies for
carbon corrosion and platinum

dissolution
e Selected experimental studies for
model development support

= Correlations and development of
design windows

Collaborators

= Complete chemical structural
analysis of degraded catalyst
layers/MEAs

= Capillary pressure measurements
on catalyst layer

= Quantify interface changes in
degraded MEAs

BALLARD
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Organizations /Partners

Prime: Ballard Material Products/Ballard Power Systems

S. Wessel, D. Harvey, V. Colbow

e Lead: Micro-structural/MEA/Unit Cell modeling, AST correlations,
characterization, durability windows

Queen’s University - Fuel Cell Research Center

K.Karan, J. Pharoah

e Micro-structural Catalyst Layer/Unit Cell modeling, catalyst
characterization

Georgia Institute of Technology
S.S. Jang
e Molecular modeling of 3-phase interface & Pt dissolution/transport
Los Alamos National Laboratory
R. Borup, R. Mukundan
e Characterization of catalyst layer/GDL
Michigan Technological University

J. Allen, R. S. Yassar

e Capillary pressure and interface characterization, catalyst layer
capillary pressure tool development

University of New Mexico

P. Atanassov

e Carbon corrosion mechanism, characterization of catalyst
powder/layers
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Summary

Relevance
e Improve understanding of durability for fuel cell materials and components
e Provide recommendations for the mitigation of MEA degradation that
facilitates achieving the stationary and automotive fuel cell targets
Approach
e Develop forward predictive MEA degradation model using a multi-scale
approach
e Investigate degradation mechanisms and correlate degradation rates with
catalyst microstructure, material properties, and cell operational conditions
Technical Accomplishments and Progress to date
e Completed BOL 1D-MEA model, simulations of composition and operational
effects on BOL performance were validated with experimental results
e Quantified Pt/C catalyst performance degradation mechanisms with catalyst
loading, Pt/C ratio, carbon type, ionomer EW , UPL , RH, time at UPL
Collaborations
e Project team partners GIT, LANL, MTU, Queen’s, UNM
e Participation in DOE Durability and Modeling Working Group
Proposed Future Research
e Extend micro-structural model to include degradation and validate
Complete MD model of Pt dissolution and transport mechanisms
e Complete experimental investigation and correlations
e Develop durability design windows using experimental results and the 1-D
MEA model
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Project Applicability to Industry

Model Predictions of Performance & Degradation based on
MEA Components, Composition, and Processing (Structure)

Catalyst Powder Membrane
Catalyst Ink || Catalyst Layer GDL

Plates
MEA

Component Properties and Structure BOL Performance

Cat. Powder Catalyst Layer GDL Plate Effrf;nge current density
BET SA Mass activity Thickness Cond. (e-,T) Tafel slope
Mass activity ECSA Tortuosity Geometry Mass activity
ECA Utilization Diffusivity HFR
Thickness Porosity Membrane =
Cat. Ink Conductivity (H*, e, T) = Capillary Press. = EW Operating
Pt/C/Ionomer Capillary pressure Cond. (e, T) Thickness
Vol. fractions Porosity. Condltlons
Parametric Predicted Voltage Predicted
Performance Study Degradation ECSA Loss

.......

BALLARD

ccccc

Cycles
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State-of-the-Art Unit Cell

= 1D Test Hardware = Reference MEA
e Bladder compression e Pt Catalyst
e High flow rates > Graphitized carbon-support

> 50:50 Pt/C ratio
» Nafion® ionomer

e Catalyst Loading
» Cathode/anode
> 0.4/0.1 mg/cm?2

e Catalyst Coated Membrane
e Ballard manufactured CCM
e Nafion® NR211

e Gas diffusion layer
> BMP Product
» Continuous Process

e Temperature control
> Liquid cooling
Carbon Composite Plates
» Low pressure
> Parallel flow fields
» Designed for uniform flow
Framed MEA
> 45 cm? active area

BALLARD® Smarter Solutions for a Clean Energy Future 28 16 May 2012



Experimental Approach

Selected MEA «— i . i
Components for MEA In-situ diagnostics*
Collaborators (] i i i
lConditiowing H,/Air Polarization
Performance
BOT > Limiting c.urre.nt _______ ;
® H,/0, polarization |
e il » V-loss break-down: Kinetic, Ohmic, Mass Transport I
. :
MOT 1 > Cycl|c Vo!ta_metry :
CO stripping |
! > ECSA ;
» Double layer charging current |
AST < ; » H, cross-over |
Testing MOT x > » Pt surface understanding v
® Electrochemical Impedance Spectroscopy (EIS) Selected
l Cell resistance
Ionomer resistance BOT/EOT
N EOT > Double layer charging current =-==> csairqglestfor
" Mass and specific activity oflaborators
Ex-situ Diagnostics* BOT/MOT/EQOT = Beginning/Mid/End of Test
® SEM: Catalyst/membrane thickness - GEee
® SEM/EDX: Pt content in membrane levalufation, ie.
ist
and catalyst layer diagnostics
® XRD: Pt crystallite size and orientation may change
® BPS Diagnostic Tool : .
= Voltage Loss Breakdown (Kinetic Loss) Reference AST: Air/H,, 100% RH, 5 psig, 80°C,
® Limiting Current 0.6 V (30 sec)> 1.2V (60 sec), 4700 cycles

Reference MEA:50:50 Pt/C, Nafion® ionomer,
0.4/0.1 mg/cm? (Cathode/anode), Ballard CCM,
Nafion® NR211, BMP GDLs

BALLARD Smarter Solutions for a Clean Energy Future Ballard 1D Test Cell, 45cm? active area 2
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Ex-situ Characterization

Component Structure/Property Changes

Properties

Purpose

Technique

Carbon

* Structure/morphology
* Pore size distribution

* Model input

- HRTEM (UNM)
« BET (LANL/BPS)

SUPPOIt |- Surface species ______________] * Correlation dev. |, Xps (UNM) __ ________
Catalvst * Ptcrystallite size  « Porosity * Model input * XRD (BPS) * BET/MIP
atalyst | « Pt size distribution « Pore size distribution|* Dev. of « HRTEM (UNM) (LANL/BPS)
Powder | * Pt agglomerate size « Surface species correlations « HRTEM (UNM)+ XPS (MTU)
Not Run Conditioned Degraded Purpose Technique

Membrane

Membrane Changes
* Thickness

MEA

Water Management Changes

* Capillary pressure
* Contact angle

* Surface energy/species
* PSD

Cathode
Cat Layer

:

CL/Membrane

Structure/ Property Changes
* Pt crystallite size
* Pt content, Thickness
* Porosity
* Crack density, depth and width
* Surface species
* Surface roughness
* Capillary pressure
* Electrical conductivity
* Cohesive strength

Structure/Property Changes
* Cohesive strength/adhesion

Interface

* Chemical bond

* Determine 1f
memb. degrades
» Model validation

* Model input
 Determine if
GDL degrades

e Mechanism
understanding

* Model input

» Model validation

 Structure/material
properties - BOL/
EOL performance
correlations

* Model input
» Correlation dev.

« SEM/EDX (BPS)

 Pseudo Hele-Shaw (MTU)

* Sessile Drop

* FTIR, X-ray Fluores. (LANL)
* MIP(BPS)

* XRD (BPS)

* SEM/EDX (BPS)

* MIP/BET (BPS/LANL)

* SEM/FESEM (BPS/MTU)
* XPS (UNM)

* Laser Profiliometry (MTU)
» Hele-Shaw (MTU)

* cAFM (MTU)

* AFM (MTU))

« AFM (MTU)

« Raman/FTIR (MTU)






