

# Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches

# Silvia Wessel (PI) David Harvey Ballard Materials Products 16 May 2012

Project ID# FC049

This presentation does not contain any proprietary, confidential, or otherwise restricted information

# **Overview**

### Timeline

- Start Date: January 2010
- End Date: March 2013
- Percent Complete: 69%

### **Barriers**

#### A. Durability

- Pt/carbon-supports/catalyst layer
- B. Performance
- C. Cost (indirect)

### **Budget**

- Total Project: \$6,010,181
  - \$ 4,672,851 DOE + FFDRC
  - \$ 1,337,330 Ballard
- DOE FY11 Funding: \$1385K
- Planned FY12 Funding: \$1200K

## **Project Partners**

- Georgia Institute of Technology
- Los Alamos National Laboratory
- Michigan Technological University
- Queen's University
- University of New Mexico

# **Relevance and Objective**

## Objective

### Identify/Verify Catalyst Degradation Mechanisms

- Pt dissolution, transport/ plating, carbon-support oxidation and corrosion, and ionomeric thinning and conductivity loss
- Mechanism coupling, feedback, and acceleration

### Correlate Catalyst Performance & Structural Changes

Catalyst layer morphology and composition; operational conditions
 Gas diffusion layer properties

### • Develop Kinetic and Material Models for Aging

Macro-level unit cell degradation model, micro-scale catalyst layer degradation model, molecular dynamics degradation model of the platinum/carbon/ionomer interface

### Develop Durability Windows

Operational conditions, component structural morphologies and compositions

### Impact

- Increasing catalyst durability
  - Based on understanding of the effect of structure and operating conditions



# **Technical Targets/Barriers**

| Table 3.4.13 Technical Targets: Electrocatalysts for Transportation Applications |                                                             |                   |         |       |  |  |  |  |
|----------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------|---------|-------|--|--|--|--|
| Characteristic                                                                   | Units                                                       | 2011 Status       | Targets |       |  |  |  |  |
| Characteristic                                                                   | onits                                                       | 2011 Status       | 2017    | 2020  |  |  |  |  |
| Platinum group metal (pgm)<br>total loading <sup>ª</sup>                         | mg PGM / cm <sup>2</sup> electrode<br>area                  | 0.15 <sup>b</sup> | 0.125   | 0.125 |  |  |  |  |
| Loss in initial catalytic activity <sup>c</sup>                                  | % mass activity loss                                        | 48 <sup>b</sup>   | <40     | <40   |  |  |  |  |
| Electro catalyst support<br>stability <sup>d</sup>                               | % mass activity loss                                        | <10 <sup>b</sup>  | <10     | <10   |  |  |  |  |
| Mass activity <sup>e</sup>                                                       | activity <sup>e</sup> A / mg Pt @ 900 mV <sub>iR-free</sub> |                   | 0.44    | 0.44  |  |  |  |  |

Ref: http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel\_cells.pdf

- 2020 Durability Targets
  - Automotive Drive Cycle: 5000 hours
  - CHP and Distributed Generation
    - $> 1 10 kW_e$ : 60,000 hours
    - > 100 kW 3MW: 80,000 hours

- <sup>c</sup> Mass activity loss after triangle sweep cycles at 50 mV/s between 0.6 V and 1.0 V at 80°C, 100% RH
- $^{\rm d}$  Mass activity loss after 1.2V hold in  $\rm H_2/O_2$  at 80°C, 100% RH
- <sup>e</sup> MEA test at 80°C, 100% RH in  $H_2/O_2$

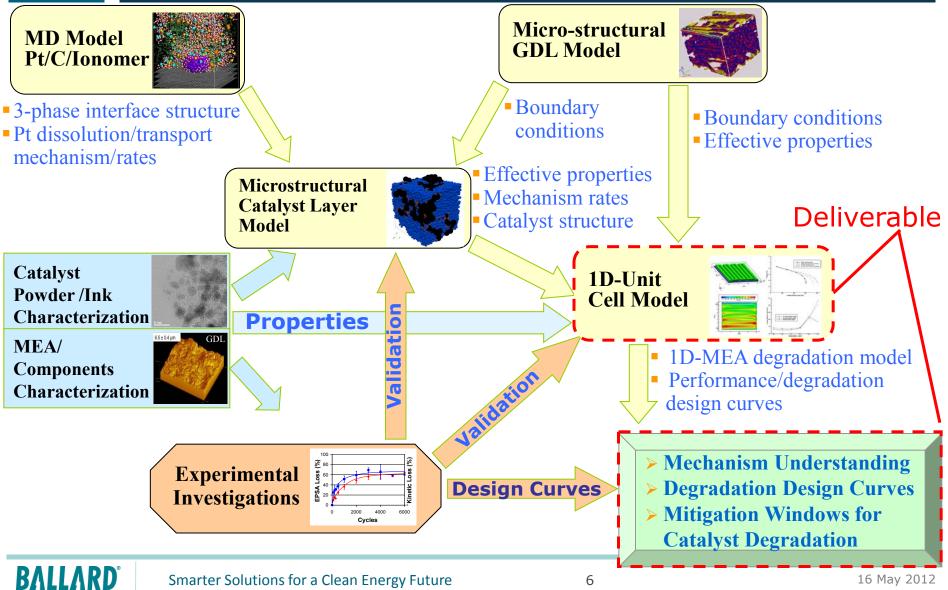
# Approach

#### Model Development

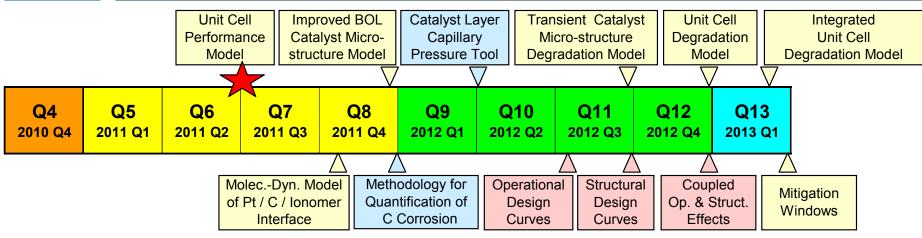
- 3 scale modeling approach
  - Molecular dynamics model of the Pt/ carbon/ionomer interface, Pt dissolution and transport process
  - Microstructural catalyst layer model to simulate the effect of local operational conditions and effective properties on performance and degradation
  - > Unit cell model predicting BOL performance and voltage degradation

### Experimental Investigations/Characterization

- Systematic evaluation of performance loss, catalyst layer structural and compositional changes of different catalyst layer structures/compositions under a variety of operational conditions
  - > Carbon support type, Pt/C ratio, ionomer content, ionomer EW, catalyst loading
  - $\succ$  Potential, RH, O<sub>2</sub> partial pressure, temperature
  - Accelerated stress tests (ASTs) combined with in-situ/ex-situ techniques
  - Performance loss breakdown to determine component contribution
  - In-situ/ex-situ characterization to quantify effect of electrode structure and composition on performance and durability


### Develop Durability Windows

• Operational conditions, component structural morphologies and compositions


### DOE Working Groups (Durability and Modeling)

• Interaction and data exchange with other projects

# **Approach Schematic**



# Milestones & Timeline FY 2011 to 2013



★Go/No-Go Decision Point

□ Modeling Milestones

Correlations Development Milestones

Tools/Methodology Development Milestones

### Go/No-Go Decision Point (completed 30 June 2011)

- Validation of statistically generated BOL UC-Model performance curves against experimental results
  - Model predictions are within the 95% statistical variability of the experimental data for the baseline MEA at standard conditions

### BALLARD

# 2011/2012 Milestones

### **Molecular Dynamics Model**

- Completion of Pt/C/ionomer interface
- ♦ Molecular modeling of Pt dissolution

### **Micro-structural Model**

- Completion of two-phase flow implementation
- Simulation of effective properties and performance with liquid water

### **1D-MEA Model**

- ♦ Pt Dissolution, agglomeration
- Validation of statistical 1D-MEA model with experiment

#### Go/No-Go decision June 30, 2011

- Integration of electrical contact resistance model
- ✓ Implementation of Multi-step ORR

## **Experimental Investigations**

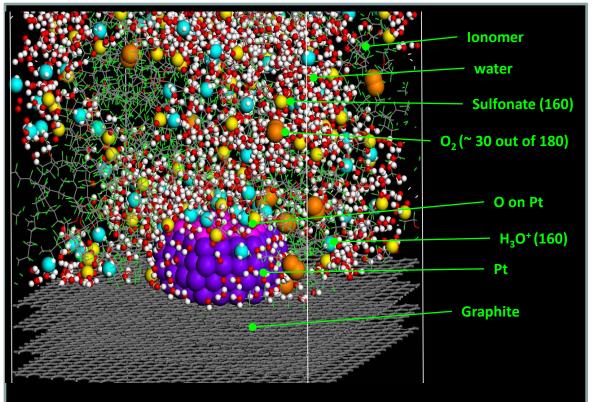
- Carbon Types
- Investigate lower upper voltage limits
- Correlate degradation with material properties
- ✓ Ionomer equivalent weight
- ✓• Pt/C ratio study
- Carbon corrosion (potential hold) study

### Material Characterization

- GDL wettability and capillary pressure
- ♦ Interface characterization
- Property changes of aged GDLs and catalyst layers

✓= Completed  $\diamond$ = In progress/on target

# Accomplishments

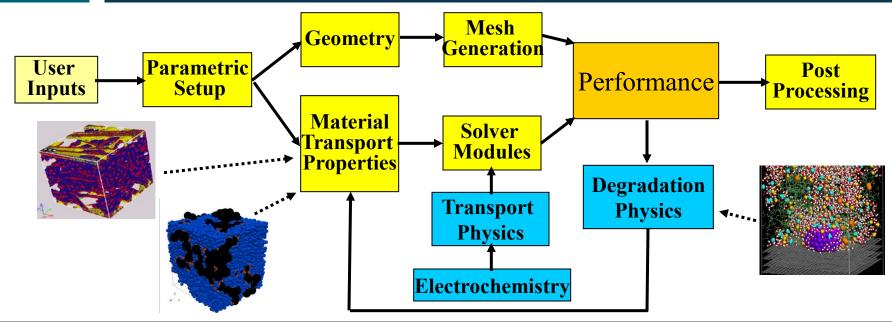

# **Modeling Status**



# Molecular Dynamics Model Three Phase Interface Model

### Surface Area Analysis of O-covered Pt

MD Simulation: Nafion®117 with 10 wt %  $\rm H_2O$  @, 353 K, 1 atm



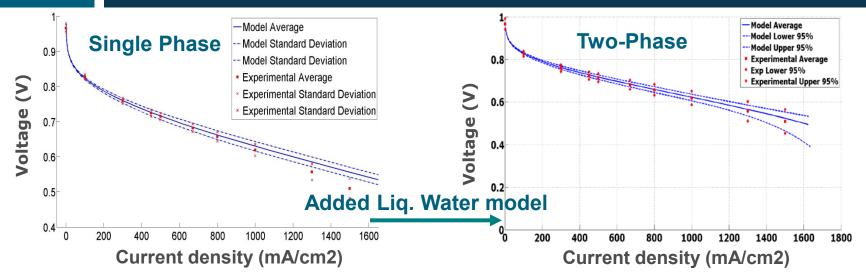

- Calculated species coverage of bare and oxide covered platinum
  - Determined active and inactive surface moieties (H<sub>2</sub>O, H<sub>3</sub>O<sup>+</sup>, O<sub>2</sub>, SO<sub>3</sub>, and polymer)
- O<sub>2</sub> prefers polymer phase over H<sub>2</sub>O
- SO<sub>3</sub> interacts strongly with Pt/PtO
  - SO<sub>3</sub> is well solvated by the water phase despite being connected to the hydrophobic chain

Improved understanding of three-phase interface (coverages vs. ECSA)
 Correction factor for ECSA estimation in micro-structural model

Interaction between PtO, SO<sub>3</sub>, and H<sub>2</sub>O is important to understand dissolution

# Unit Cell Model Development Scripting and Statistical Input Options




#### Model was separated into modular parts

- User inputs, transport properties, and physics
- Statistical variation
  - User inputs (material constants or operational conditions)
  - Transport properties (effective properties vs. composition of porous media)

### Effective transport properties from micro-structural models

- Catalyst layer (gas diffusivity, thermal conductivity)
- Gas diffusion layer (gas diffusivity, permeability, thermal conductivity)

# **Unit Cell BOL Model** Validation (Baseline MEA, Standard Conditions)



#### **Statistical Model Inputs**

| Component Properties             | % Deviation (1 Std Dev) |   |  |
|----------------------------------|-------------------------|---|--|
| Catalyst/Catalyst Layer          |                         |   |  |
| Thickness (microns)              | +/- 8%                  |   |  |
| Weight Ratios (%)                |                         |   |  |
| Pt:C                             | +/- 1%                  |   |  |
| (Pt:C):Ionomer                   | +/- 1%                  |   |  |
| Pt Loading [mg/cm <sup>2</sup> ] | +/- 1.25 %              |   |  |
| Pt size                          | +/- 10%                 |   |  |
| Tafel Slope [mV/dec]             | fixed                   |   |  |
| Jo [A/cm^2 pt]                   | +/- 10%                 |   |  |
| GDL                              |                         |   |  |
| Porosity                         | fixed                   |   |  |
| Tortuosity                       | +/- 3%                  |   |  |
| Thickness (microns)              | +/- 4%                  |   |  |
| Membrane                         |                         |   |  |
| Thickness (microns)              | +/- 2%                  | n |  |

# Sample to sample variation created using a normally distributed, random population Initial model validation, single phase

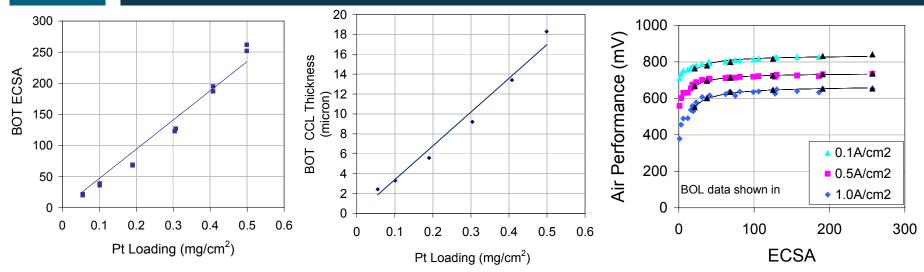
 Predictions were within 1 standard deviation up to 1.0 A/cm<sup>2</sup>

#### Two-phase model validation

- Accurately captures effect of increasing water content
- Experimental and model variation both increase with current density due to "noise" factors having increased effects on transport processes
- Experimental dataset of 20 MEAs

# Accomplishments Modelling/Experimental Results

# Effect of Cathode Catalyst Structure / Composition on Performance and Degradation

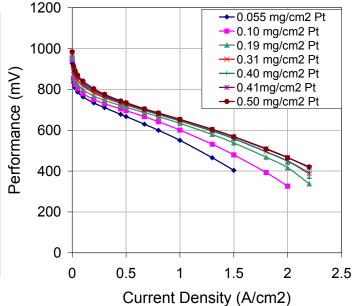

#### Pt Loading Study (Pt50-LSAC)

### Carbon Ratio Study (PtX-LSAC)

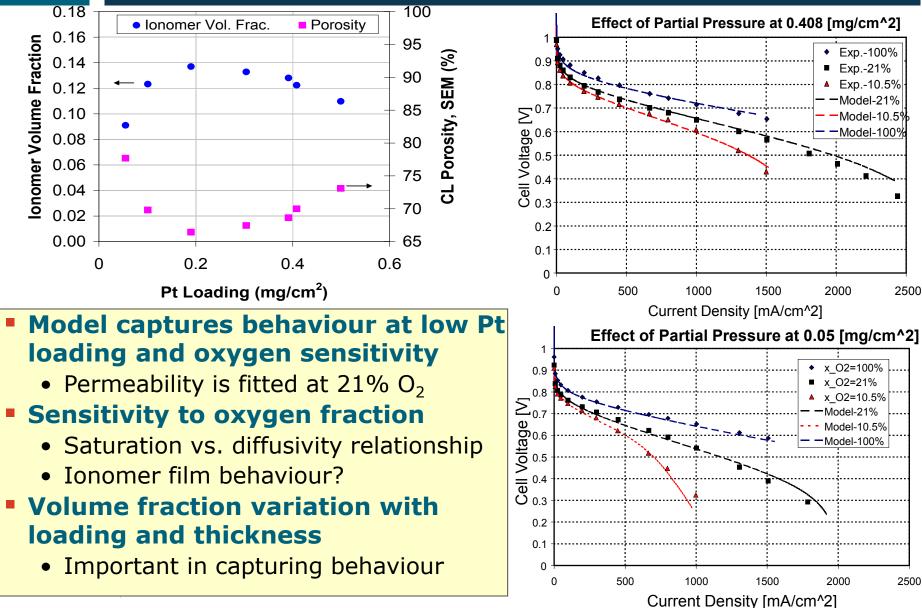
Reference MEA: 50:50 Pt/C, Nafion<sup>®</sup> ionomer, 0.4/0.1 mg/cm<sup>2</sup> (Cathode/anode), Ballard CCM, Nafion<sup>®</sup> NR211, BMP GDLs
 Ballard Test Cell: 1D, 45cm<sup>2</sup> active area

**Reference AST**: Air/H<sub>2</sub>, 100% RH, 5 psig, 80°C, 0.6 V (30 sec)  $\rightarrow$  1.2V (60 sec), 4700 cycles

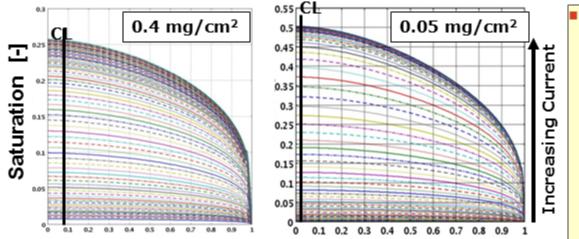
# Effect of Pt Loading Catalyst Layer Structure (Experiment)



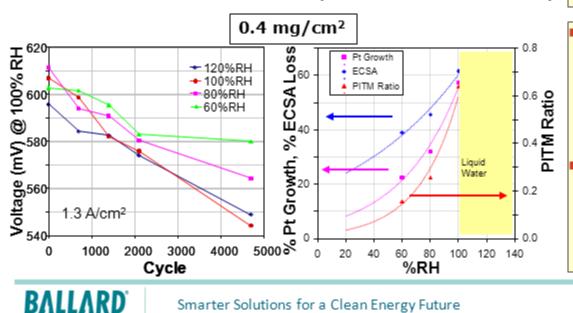

### ECSA/Thickness vs. loading


- Relationships for macro-model
- Validation data for micro-structural model

#### Performance loss increases with low loaded structures


- Below ECSA ~75
- Loss increases with increasing current
- Higher sensitivity to low oxygen concentration




# Platinum Loading Study BOT Performance (Experiment & Predicted)



# Platinum Loading Study Effect of Water

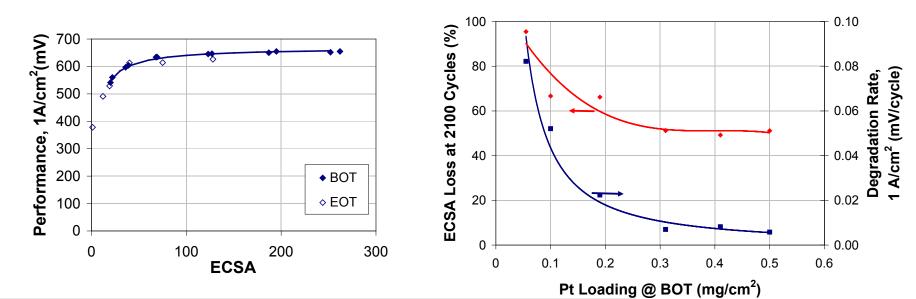


#### Dimensionless Thickness (Membrane to Channel)

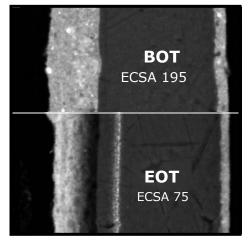


#### Saturation increases in low loaded structures

- For low Pt loading max H<sub>2</sub>O content is  $\sim 2x$  higher than for high Pt loading
- Relationship between saturation and diffusion causes additional sensitivity to O<sub>2</sub> transport at high water contents

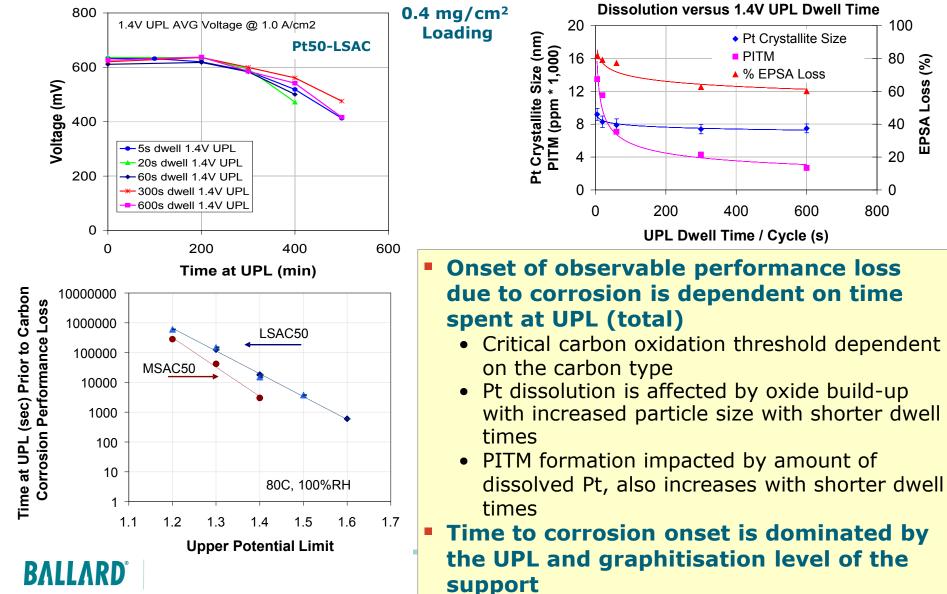

#### Voltage loss increases with increasing RH

 Similar performance loss for RH > 100% (plateau in PITM, Pt growth, and ECSA loss

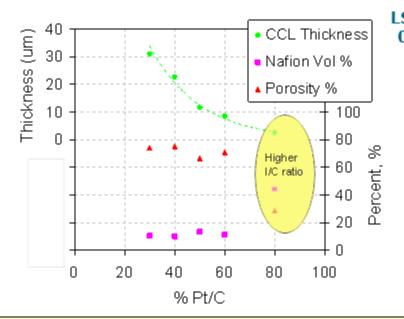

#### Pt dissolution decreases with lower reactant RH (<100%)

 Decrease in PITM, Pt growth, ECSA

# **Effect of Pt Loading** Degradation - Pt Dissolution



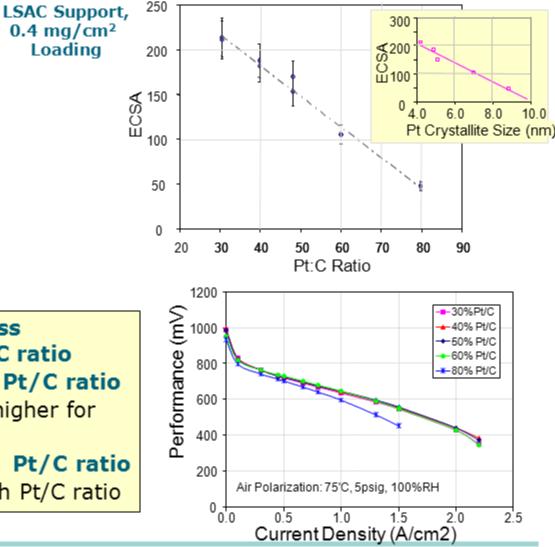

- Performance correlates to ECSA for BOT and degraded samples
- Degradation rate increases for <0.3 mg/cm<sup>2</sup> Pt loading
- Pt dissolution changes structure of catalyst layer
  - Depletion of Pt at membrane interface, PITM, increased Pt size, lower surface area
  - No significant change in catalyst layer thickness



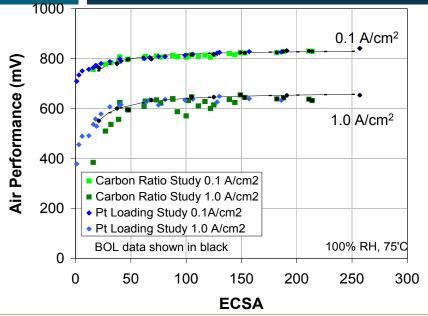

# **Carbon Corrosion Degradation Impact of Dwell time**

EPSA Loss (%)




# Effect of Pt/C Ratio BOT Catalyst Layer Structure




- Cathode catalyst layer thickness decreases with increasing Pt/C ratio
- Porosity is not affected by the Pt/C ratio
  - Ionomer/Carbon ratio is 2.5x higher for 80% Pt/C

#### ECSA deceases with increasing Pt/C ratio

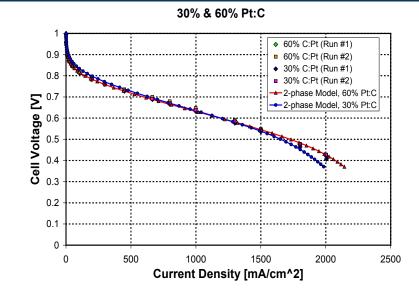
Pt crystallite size increases with Pt/C ratio



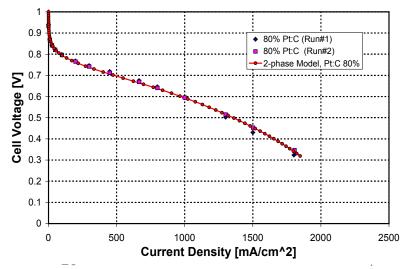
# Effect of Pt/C Ratio BOT Performance (Experiment & Predicted)



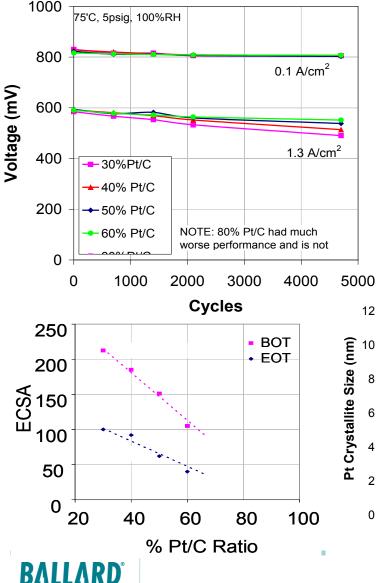
#### ECSA vs. Performance


- Similar behavior in kinetic region with Pt loading study
- Pt dispersion effect at high ratios

### 80% Pt/C has lower performance

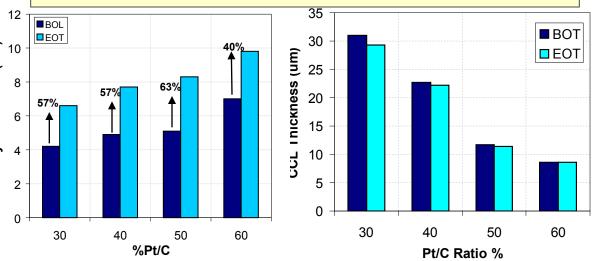

 Increased CL ionic resistance and reduced porosity

#### Model predictions


- Similar move in kinetics, liquid water effects with layer thickness changes
- Able to capture effect of higher I/C ratio








# Effect of Pt/C Ratio Degradation



# Voltage Degradation decreases with increasing Pt/C Ratio

- Improved performance at higher current densities after degradation cycling
- % ECSA loss at EOT is similar for all Pt ratios
  - Each sample losing ~ 50% of the initial EPSA
- BOT crystallite sizes increase with Pt/C ratio
- No electrode thickness changes (change is within variation at BOL)



16 May 2012

# **Plan Forward**

## **Model Development**

#### 1-D MEA Model

BALLARD

- Pt dissolution
  - Linking platinum dissolution to multistep ORR (underway)
  - Pt-dissolution, agglomeration, formation of PITM (underway)
- Carbon support oxidation/ corrosion
   > 2-stage pathway
- Validation with AST cycling
- Correlations and development of design windows

### Micro-structural Catalyst Model

- Mass transport limitations and low loaded catalysts
- Platinum dissolution, Carbon corrosion
- Molecular Dynamics Model
  - Platinum dissolution within 3-phase interface
  - Transport of Pt<sup>n+</sup> within membrane phase

# **Experimental Investigations**

- Complete operational studies for carbon corrosion and platinum dissolution
  - Selected experimental studies for model development support
- Correlations and development of design windows

## Collaborators

- Complete chemical structural analysis of degraded catalyst layers/MEAs
- Capillary pressure measurements on catalyst layer
- Quantify interface changes in degraded MEAs

# **Organizations / Partners**

## Prime: Ballard Material Products/Ballard Power Systems

#### S. Wessel, D. Harvey, V. Colbow

- Lead: Micro-structural/MEA/Unit Cell modeling, AST correlations, characterization, durability windows
- Queen's University Fuel Cell Research Center K.Karan, J. Pharoah
  - Micro-structural Catalyst Layer/Unit Cell modeling, catalyst characterization

#### Georgia Institute of Technology S.S. Jang

• Molecular modeling of 3-phase interface & Pt dissolution/transport

### Los Alamos National Laboratory

- R. Borup, R. Mukundan
  - Characterization of catalyst layer/GDL

### Michigan Technological University

- J. Allen, R. S. Yassar
- Capillary pressure and interface characterization, catalyst layer capillary pressure tool development

### University of New Mexico

#### P. Atanassov

 Carbon corrosion mechanism, characterization of catalyst powder/layers





BALLARD









# Summary

#### Relevance

- Improve understanding of durability for fuel cell materials and components
- Provide recommendations for the mitigation of MEA degradation that facilitates achieving the stationary and automotive fuel cell targets

#### Approach

- Develop forward predictive MEA degradation model using a multi-scale approach
- Investigate degradation mechanisms and correlate degradation rates with catalyst microstructure, material properties, and cell operational conditions

#### Technical Accomplishments and Progress to date

- Completed BOL 1D-MEA model, simulations of composition and operational effects on BOL performance were validated with experimental results
- Quantified Pt/C catalyst performance degradation mechanisms with catalyst loading, Pt/C ratio, carbon type, ionomer EW , UPL , RH, time at UPL

### Collaborations

- Project team partners GIT, LANL, MTU, Queen's, UNM
- Participation in DOE Durability and Modeling Working Group

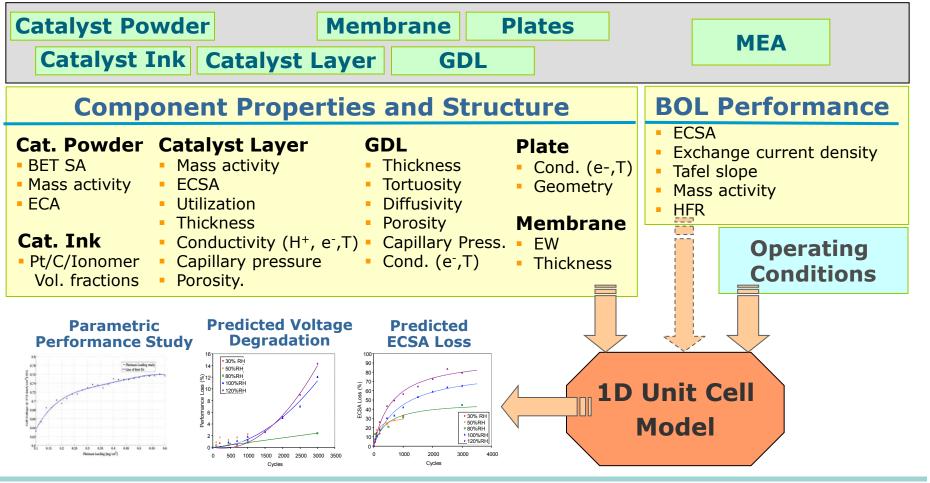
#### Proposed Future Research

- Extend micro-structural model to include degradation and validate Complete MD model of Pt dissolution and transport mechanisms
- Complete experimental investigation and correlations
- Develop durability design windows using experimental results and the 1-D MEA model



# Acknowledgement

#### Thank you:


- Financial support from the U.S. DOE-EERE Fuel Cells Technology Program
- Support from project managers/advisor Kathi Epping Martin, David Peterson, and John Kopasz
- Project Collaborators



# **Technical Backup Slides**

# **Project Applicability to Industry**

Model Predictions of Performance & Degradation based on MEA Components, Composition, and Processing (Structure)



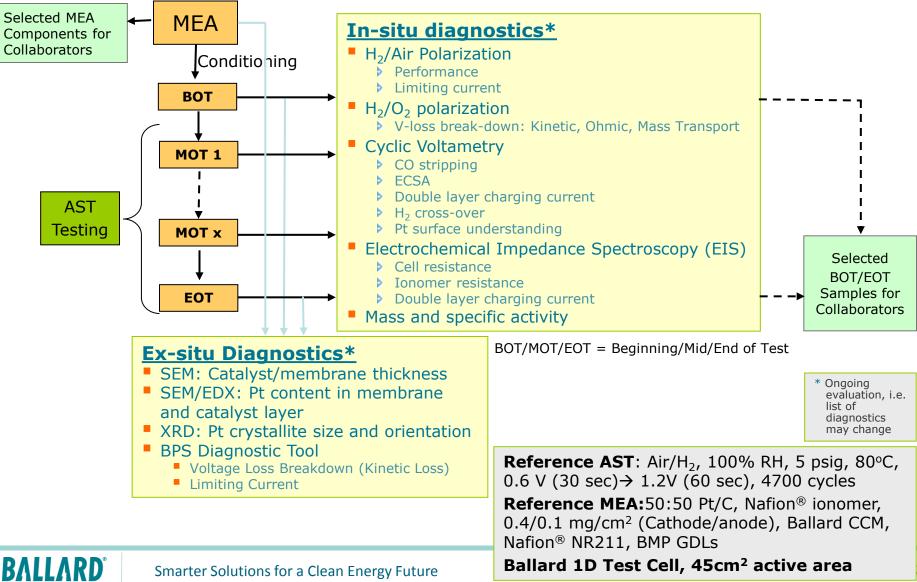
Smarter Solutions for a Clean Energy Future

BALLARD

# **State-of-the-Art Unit Cell**

### ID Test Hardware

- Bladder compression
- High flow rates
- Temperature control
  - Liquid cooling
- Carbon Composite Plates
  - Low pressure
  - Parallel flow fields
  - Designed for uniform flow
- Framed MEA


BALLARD

➢ 45 cm² active area

### Reference MEA

- Pt Catalyst
  - Graphitized carbon-support
  - > 50:50 Pt/C ratio
  - Nafion<sup>®</sup> ionomer
- Catalyst Loading
  - Cathode/anode
  - > 0.4/0.1 mg/cm<sup>2</sup>
- Catalyst Coated Membrane
  - Ballard manufactured CCM
  - Nafion® NR211
- Gas diffusion layer
  - BMP Product
  - Continuous Process

# **Experimental Approach**



# **Ex-situ Characterization** Component Structure/Property Changes

|     |                      | Properties                                                                                                                           |                                                                                                                 | Purpose                                                       | Technique                                                                                                                                                                             |                                                                                                                         |
|-----|----------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|     | Carbon<br>Support    | <ul> <li>Pore size distribution</li> <li>Surface species</li> <li>Pt crystallite size</li> <li>Porosity</li> </ul>                   |                                                                                                                 | <ul><li>Model input</li><li>Correlation dev.</li></ul>        | • HRTEM (UNM)<br>• BET (LANL/BPS)<br>• XPS (UNM)                                                                                                                                      |                                                                                                                         |
|     | Catalyst<br>Powder   |                                                                                                                                      |                                                                                                                 | <ul> <li>Model input</li> <li>Dev. of correlations</li> </ul> | • XRD (BPS) • BET/MIP<br>• HRTEM (UNM) (LANL/BPS)<br>• HRTEM (UNM)• XPS (MTU)                                                                                                         |                                                                                                                         |
| _   |                      | Not Run                                                                                                                              | Conditioned                                                                                                     | Degraded                                                      | Purpose                                                                                                                                                                               | Technique                                                                                                               |
|     | Membrane             |                                                                                                                                      | Membran<br>• Thicki<br>• PTIM                                                                                   | ness                                                          | <ul> <li>Determine if<br/>memb. degrades</li> <li>Model validation</li> </ul>                                                                                                         | • SEM/EDX (BPS)                                                                                                         |
| MEA | GDL                  | • Cap<br>• Con                                                                                                                       | <b>fanagement Cl</b><br>illary pressure<br>itact angle<br>face energy/spec                                      | U                                                             | <ul> <li>Model input</li> <li>Determine if<br/>GDL degrades</li> </ul>                                                                                                                | <ul> <li>Pseudo Hele-Shaw (MTU)</li> <li>Sessile Drop</li> <li>FTIR, X-ray Fluores. (LANL)</li> <li>MIP(BPS)</li> </ul> |
|     | Cathode<br>Cat Layer | <ul> <li>Pt c</li> <li>Pt c</li> <li>Pore</li> <li>Cra</li> <li>Sur</li> <li>Sur</li> <li>Cap</li> <li>Eleco</li> <li>Coh</li> </ul> | ck density, dept<br>face species<br>face roughness<br>fallary pressure<br>ctrical conductive<br>trical strength | ess<br>h and width<br>vity                                    | <ul> <li>Mechanism<br/>understanding</li> <li>Model input</li> <li>Model validation</li> <li>Structure/material<br/>properties - BOL/<br/>EOL performance<br/>correlations</li> </ul> | • Laser Profiliometry (MTU)                                                                                             |
|     | lembrane<br>terface  | • Coh                                                                                                                                | <b>re/Property Ch</b><br>sesive strength/a<br>mical bond                                                        | adhesion                                                      | <ul><li>Model input</li><li>Correlation dev.</li></ul>                                                                                                                                | • AFM (MTU)<br>• Raman/FTIR (MTU)                                                                                       |