

Transport in PEMFC Stacks

Giner, Inc.

Hui Xu Junqing Ma Cortney Mittelsteadt (PI)

University of South Carolina

John Van Zee Sirivatch Shimpalee Visarn Lilavivat Jason Morgan

Ballard Material Products

Don Connors Guy Ebbrell

Virginia Tech James McGrath Yu Chen Jarrett Rowle Andy Shaver Chang Hyun Lee

Tech Etch Kevin Russell

Project ID # FC054

Transport in PEMFC Stacks

Timeline

- Project Start Date: 11/1/2009
- Project End Date: 8/31/2013
- Percent Complete: 60%

Budget

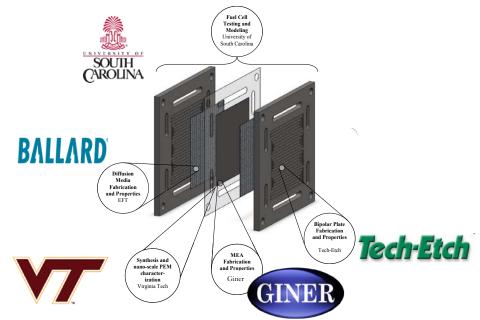
- Total Project Funding: \$3.340M
 - DOE Share \$2.662M
 - Cost Share \$ 0.678M
- Funding Received in FY11: \$786K
- Planned Funding for FY12: \$300K

Barriers Addressed

- Performance
- Water Transport within Stack
- System Thermal and Water Management
- Start-Up and Shut Down

Technical Targets

- Cold Start-up Times
- Specific Power Density
- Stack Power Density
- Stack Efficiency


Partners

- University of South Carolina
- Virginia Tech
- Tech Etch
- Engineered Fiber Technologies

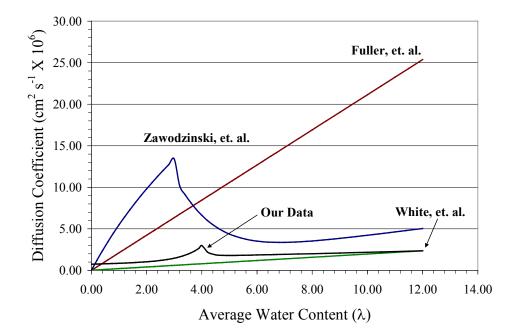
Approach: Team and Tasks

Objective: Improve Understanding/Correlation Between Material Properties and Model Equations

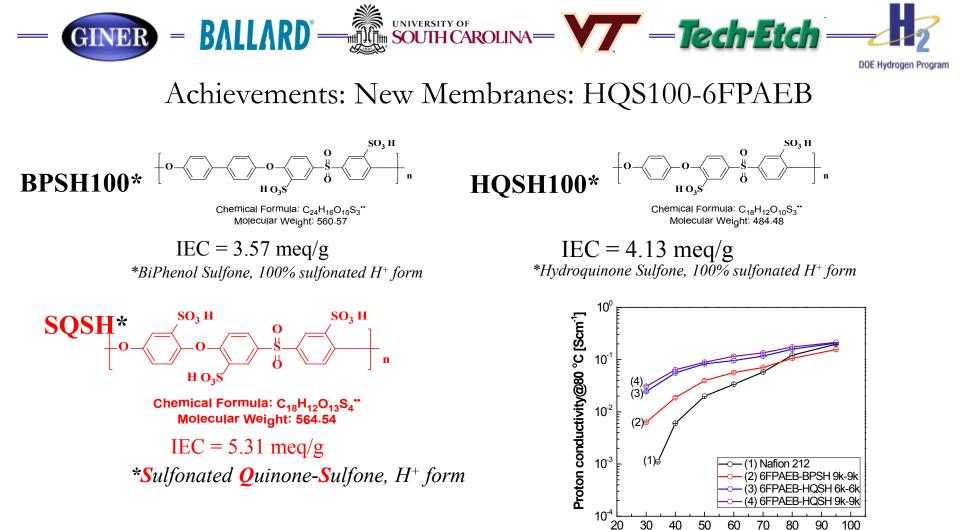
- Generate model
- Supply model relevant transport numbers
- Stress the model by developing different materials with different transport properties
- Determine sensitivity of fuel cell performance to different factors
- Guide research

Milestone	Plan Complete	Actual Complete
Baseline PFSA model, with overall results correlating within +-20% of each other. Design the new apparatus for extending the range of electroosmotic drag and diffusivity.	4/15/2011	4/1/2011
Extend Model to a variety of membranes, catalyst content, GDM's, and flow fields. The model should be able to demonstrate prediction of the actual data within +-20% of the experimental results.	8/15/2012	60%

Approach & Milestones


GINER - BALLARD - SOUTH CAROLINA - V7 - Tech-Etch -

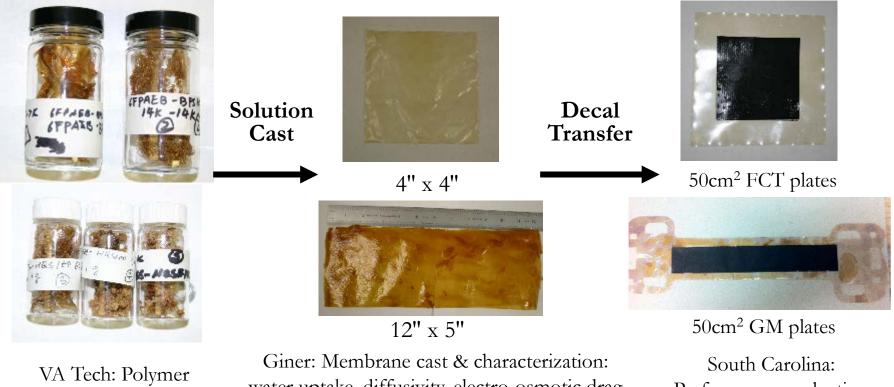
Year	Techniques	Materials	Modeling
Year 1	New technique generation for static and dynamic diffusion, EODC, through plane conductivity confirmation with Baseline materials. (90%) Current Distribution Board Demonstration (100%)	Baseline hydrocarbon PEM generated and down selected (80%) Baseline Gas diffusion Media Delivered (100%) First Etched Plates (100%)	Set-Up of Model Use of Baseline materials for Testing Model Sensitivity Testing
Year 2	Techniques applied to alternative materials. Diffusivity apparatus used to characterize alternative diffusion media.	Scale-up of Baseline PEM Integration of catalysts Modification of diffusion media Alternative Plates & Design of larger plates.	Performance and water balance modeled and confirmed with baseline materials and hydrocarbon PEM. (50%) Alternative diffusion media tested.
Year 3 (Period 2)	Low Temperature Studies	Delivery of Large PEMs Current Distribution board for larger plate Fabrication of larger plate and current distribution board	Modeling extended to larger cells. Effect of coolant/heat transfer. Model confirmation with current distribution and water balance.


Relevance: Use of Modeling in Fuel Cell Development is Widespread. Agreement on Fundamentals *is Not*.

- In developing a model for transport in fuel cell systems, the first thing that is needed is the key transport numbers
 - Diffusivity
 - Water Uptake
 - Electro-osmotic Drag
 - Through Plane Conductivity
- NOTHING EVEN RESEMBLING CONSENSUS ON THESE FUNDAMENTALS
- Systematic approach of generating and developing various materials with better characterization methods is needed

T.A. Zawodzinski, M. Neeman, L.O. Sillerud and S. Gottesfeld, J. Phys. Chem., 95, 6040 (1990)

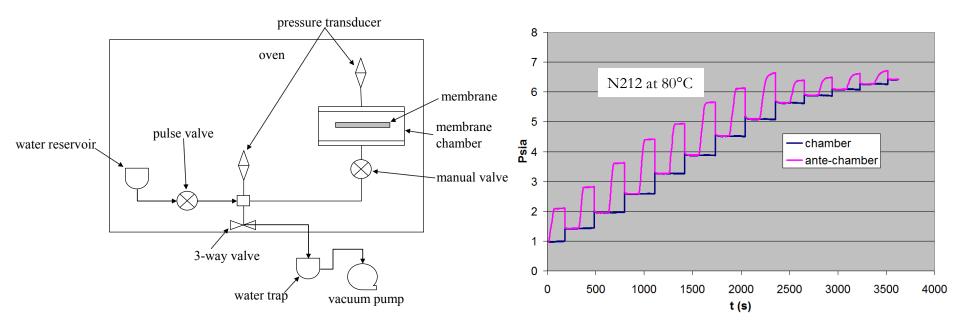
T.F. Fuller, Ph.D. Thesis, University of California, Berkeley, CA (1992) T.V. Nguyen and R.E. White, *J. Electrochem. Soc.*, **140**, 2178 (1993) Equations of the form of: S. Motupally, A.J. Becker and J.W. Weidner, *J. Electrochem. Soc.*, **147**, 3171 (2000)



- Provide design guidelines for PEMs on impact of structure and segregation of charges
- Giner to use polymer powders to determine fundamental properties, generate MEAs
- USC to use model to predict performance based on fundamental properties

Relative humidity [%]

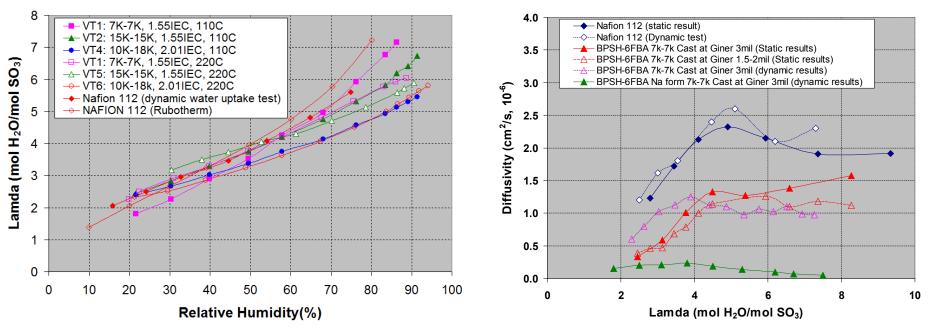
Achievements: New Membranes: MEA Fabrication



Synthesis

Giner: Membrane cast & characterization: water uptake, diffusivity, electro-osmotic drag coefficient (EODC), MEA fabrication South Carolina: Performance evaluation and model validation

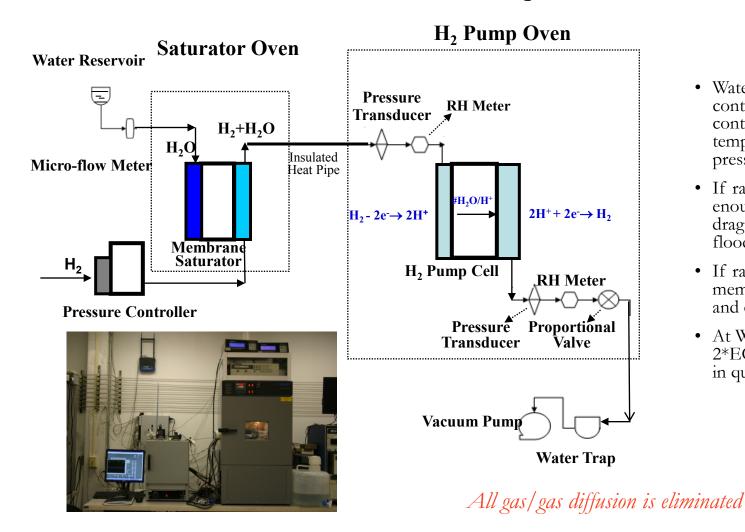
Achievements: New Technique: Simultaneous Water Uptake and Diffusivity


Non-membrane diffusion is eliminated by avoiding inerts in the system

- Automation of dynamic system assures continuous diffusivity measurements at a variety of relative humidity;
- Process simple, effective, and accurate, open to other researchers in fuel cell community

Achievements: New Technique: Simultaneous Water Uptake and Diffusivity

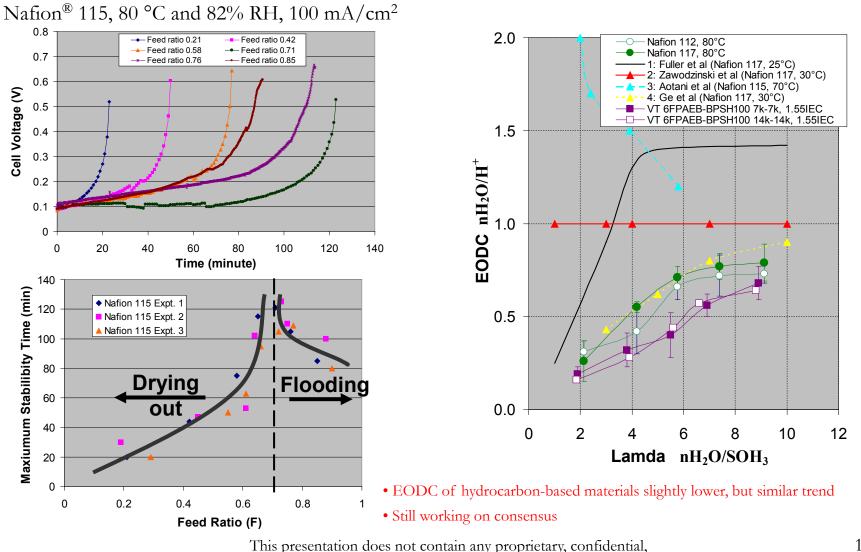
Operation T: 80°C


Nafion is a registered trademark of E.I. du Pont de Nemours and Company

Similar Isotherms seen for both PFSA and hydrocarbon-based ionomers Diffusivity of PFSA > Block Hydrocarbons in H⁺ form >> Na⁺ form

> This presentation does not contain any proprietary, confidential, or otherwise restricted information

Achievements: New Technique: EODC



- Water/H₂ inlet ratio controlled by controlling saturator temperature and H₂ pressure
- If ratio is too high, not enough water is dragged across and cell floods and fails
- If ratio is too low, membrane dries out and cell fails
- At Water/H₂ = 2*EODC Cell operates in quasi-stable state

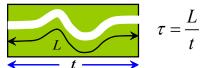
This presentation does not contain any proprietary, confidential, or otherwise restricted information

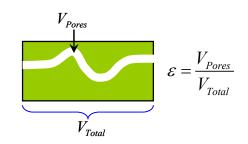
Achievements: New Technique: EODC

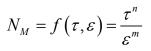
or otherwise restricted information

Achievements: New Materials: Diffusion Media

- Ballard added to the program recently
- Started with Toray Materials
 - Variable Wet-Proofing
 - Microporous Layer
- Ballard will provide more custom materials
- Want to generate differences in:
 - MacMullin Number
 - Porosity
 - Tortuosity
 - Hydrophobicity

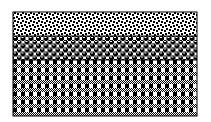

- Tortuosity
 - Ratio of the actual path length through the pores to the shortest linear distance between two points.


•Porosity


Ratio of void volume (volume of pores) to the total volume.

MacMullin Number

Function of tortuosity and pososity.



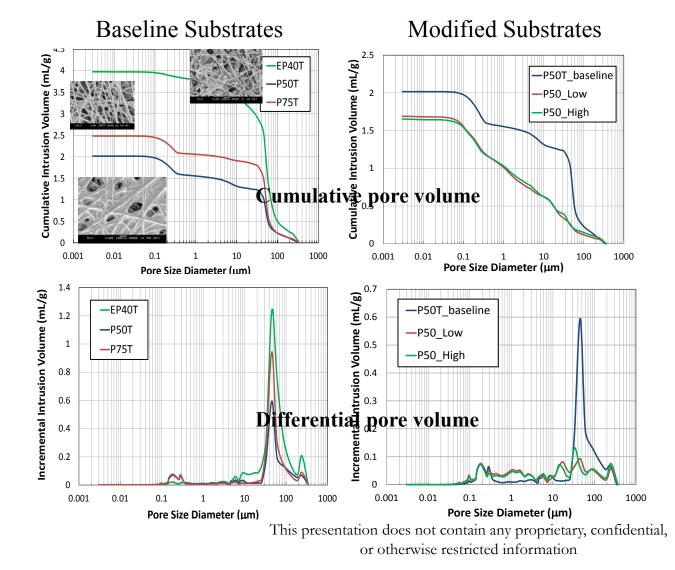
Achievements: Design of Gas Diffusion Media

MPL 1

MPL 2

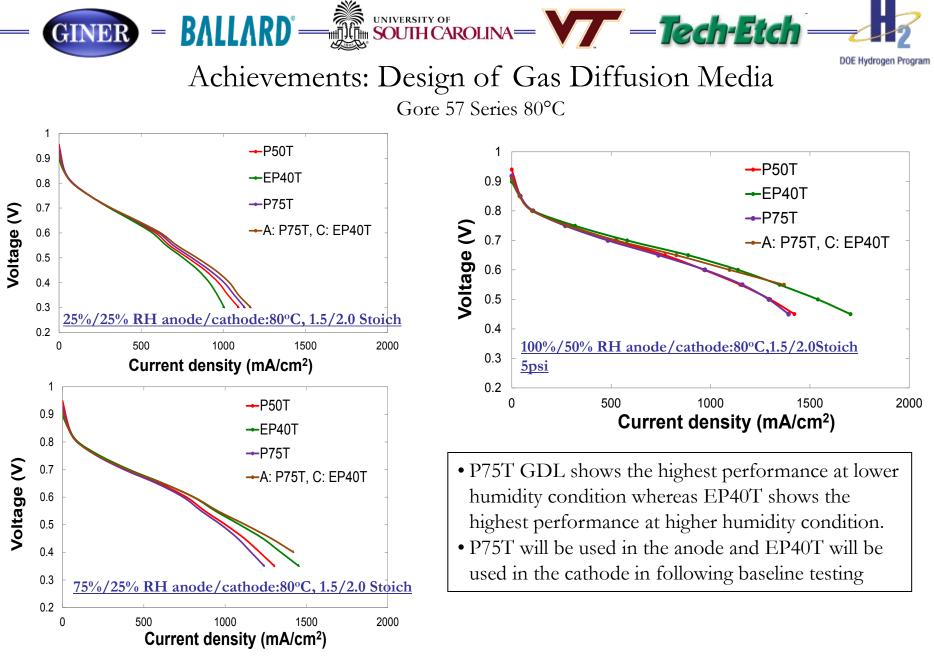
Carbon Substrate

Baseline Material at start of program was Toray H060

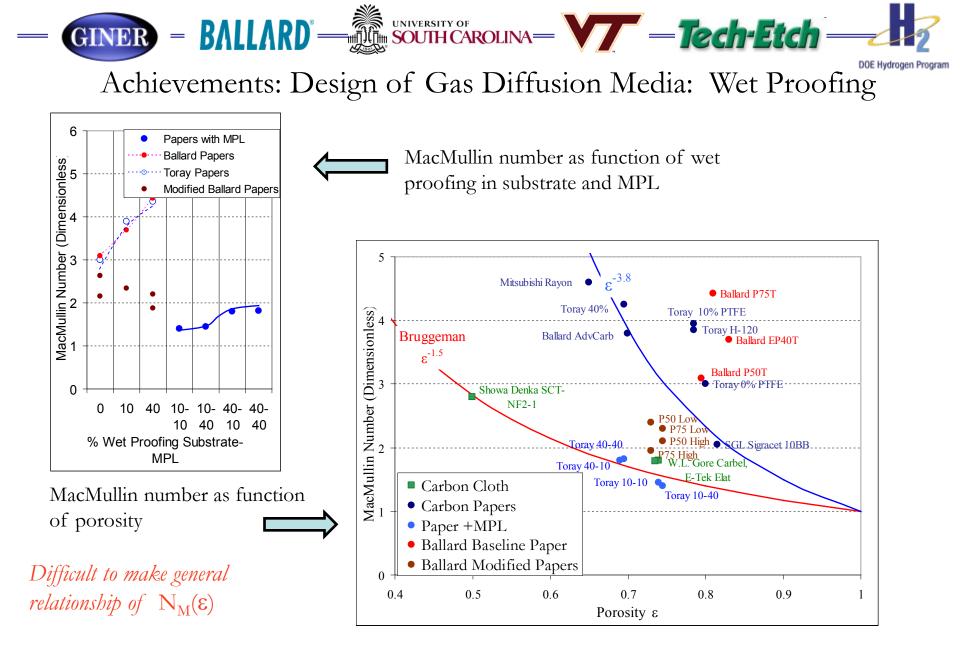

The new design of GDLs have been modified from standard Ballard GDLs by adding two micro porous layers. Each set has been treated with two different methods in order to provide two different values of diffusivity.

Substrate	Diffusivity Modification	MPL 1/MPL2 (carbon particle size)
P50	Low	Small/Large
EP40		
P75	High	Large/Small

Total of 12 new papers generated 5 characterized ex-situ to date

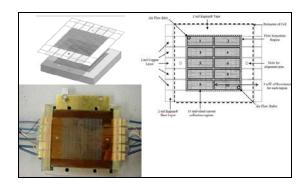


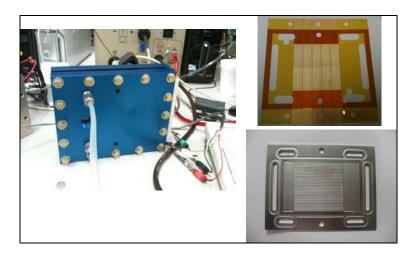
Achievements: Design of Gas Diffusion Media Comparison of Mercury pore size distributions of new design GDLs

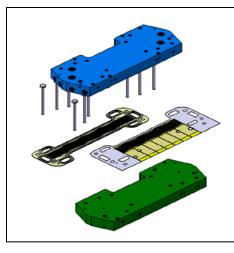


EP40T has largest pore volume, concentrated at 50 µm

Modification greatly reduces volume of large pores

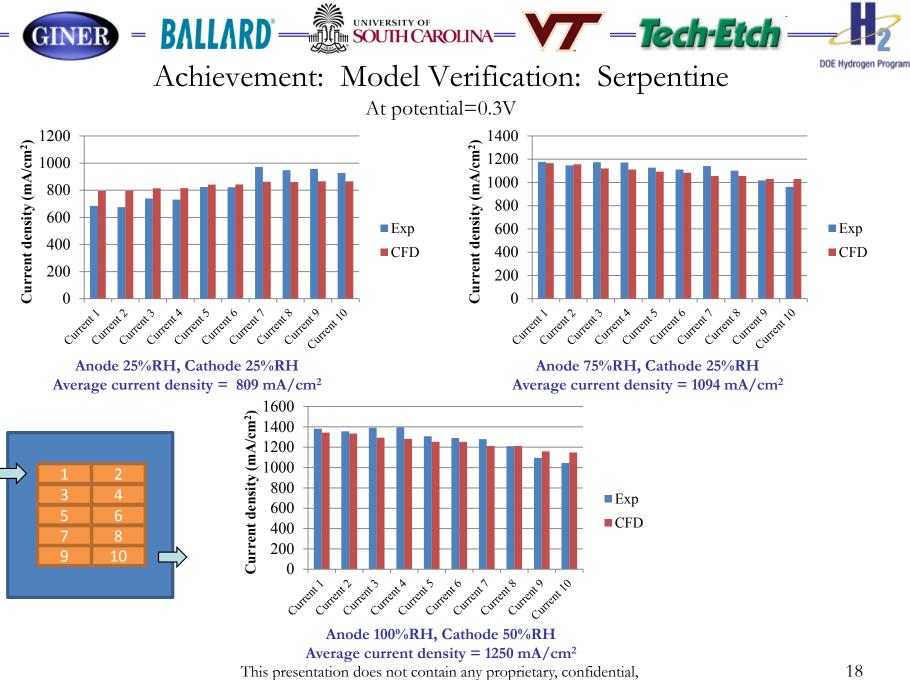

This presentation does not contain any proprietary, confidential, or otherwise restricted information


This presentation does not contain any proprietary, confidential, or otherwise restricted information


Achievements: Fuel Cell Flow-Fields

50-cm² USC-serpentine flow-field

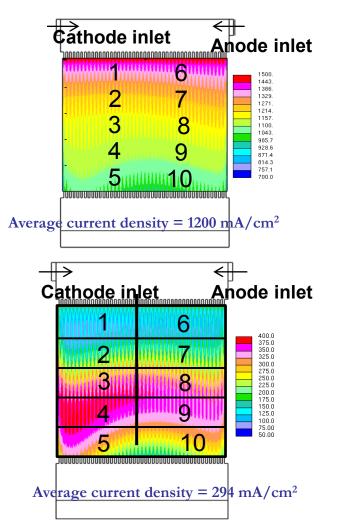
50-cm² USC-parallel flow-field (In-progress)

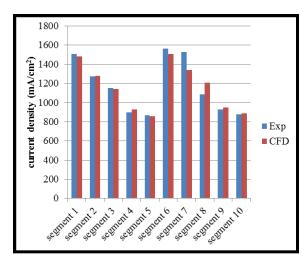

50-cm² GM-Downthe-Channel flow-field (In-progress)

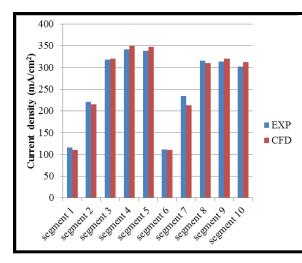
Serpentine Hardware (Fuel Cell Technologies)

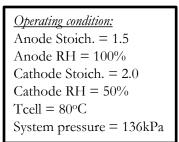
- •Legacy Hardware
- •Most Common

Thin Metal Plates (Tech Etch USC Design)


- •Closer to Automotive
- •Allows minimization of pressure drop to flow fields Thin Graphite Plates (GM)
- •Also common
- •Open design allows comparison/collaboration Current Distribution Boards Designed for All 3




or otherwise restricted information



Achievements: Flow Field Modeling: Thin Metallic Plates

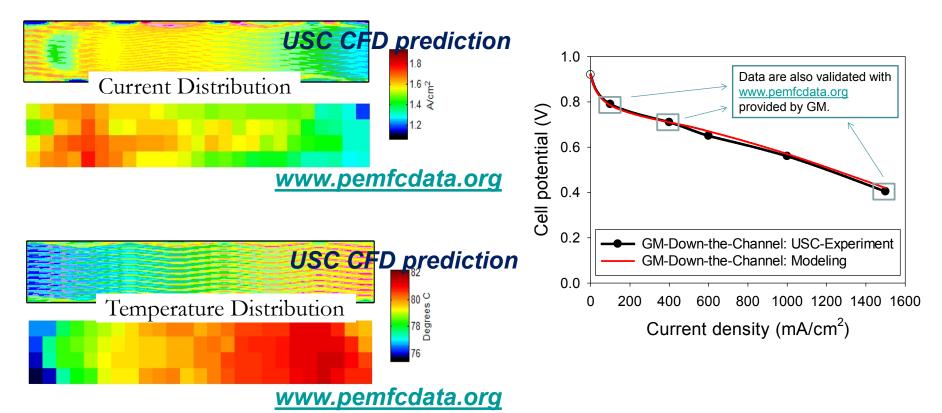
High Current Wet

Model Predicts Equally Well •High i/Wet •Low i/Dry

Low Current Dry

<u>Operating condition:</u> Anode Stoich. = 1.5 Anode RH = 25% Cathode Stoich. = 2.0 Cathode RH = 25% Tcell = 80°C System pressure = 101kPa

This presentation does not contain any proprietary, confidential, or otherwise restricted information

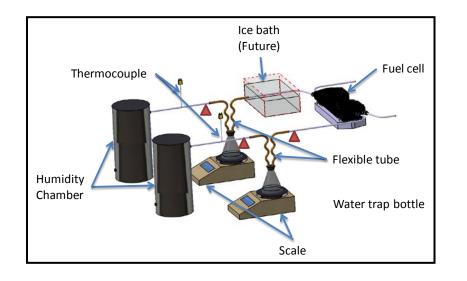


Achievement: Model Verification:

Distributions of current density and temperature of 50-cm² GM-Down-the-Channel flow-field compared with

www.pemfcdata.prg

(I_{avg} = 1.5 A/cm², <u>counter-current flow</u>: 50/50%RH, 150/150kPa, 80°C, 1.5/2.0 stoich)



USC data matches published data very well, both with performance and model results

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Achievement: Model Verification:

Water Balance experiment and numerical result of GM Down-the-Channel flow-field (<u>counter-current flow</u>: 50/50%RH, <u>101/101kPa</u>, 80°C, 1.5/2.0 stoich)

New Transport Numbers Greatly Improve Prediction of Water Mass Balance

	i		Anode V	Vater Balance	(mg/sec)	Cat	hode Water	Balance (n	ng/sec)
	1 A / 2002?	RH	Water in	Water out	Cross to	Water	Gen.	Water	Cross from
	A/cm ²		water m	water out	Cathode	in	Gen.	out	Anode
EXP	0.4	50	0.86	0.34	0.51	2.68	1.87	5.02	0.47
CFD(new)	0.4	50	0.90	0.33	0.57	2.70	1.87	5.08	0.51
CFD(old)	0.4	50	0.90	0.37	0.53	2.70	1.87	5.12	0.55
EXP	0.8	50	1.7	1.26	0.43	5.36	3.73	9.40	0.31
CFD(new)	0.8	50	1.72	1.30	0.32	5.37	3.73	9.43	0.33
CFD(old)	0.8	50	1.72	0.86	0.86	5.37	3.73	9.99	0.89

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Future Work

- Period 1 (8/31/12)
 - Membrane Synthesis
 - Finish Characterization of SQS Based Materials
 - Scale up production of select membranes
 - Materials Characterization
 - Diffusion and water transport of various GDL
 - Continue Characterization of new materials
 - Modeling/Performance
 - New Membranes
 - New Diffusion Media
 - Concentrate on mixed flow conditions
- Period 2
 - Generate larger membranes
 - Extend characterizations to sub-ambient regions
 - Finish characterizations of alternative materials, develop non-empirical models
 - Utilize GM hardware for short stack performance/modeling

SUMMARY

- Membrane design and development, McGrath's group at VA Tech:
 - Completed the synthesis of a full list of hydroquinone based hydrophilic-hydrophobic block copolymers (HQSH-6FPAEB).
 - Provided ~20g of the 6FPAEB-BPSH and 6FPAEB-HQS100 polymer powders to Giner for member casting and testing.
- Membrane Characterization And Performance Testing at Giner:
 - Successfully casted copolymer powders from VA Tech to membranes
 - Automated dynamic water uptake/diffusivity test system
 - Completed diffusivity measurements of VA Tech membranes
 - Measure EODC measurements of Nafion® membrane using dead-ended H₂ pump
 - Obtained GM plates and flow paths and provided MEAs for testing
- Transport Modeling, GDL & Current Distribution Board Characterization at USC:
 - Designed new GDLs and completed pore size distributions with fuel cell performance test;
 - Simulated cell performance and current distribution at various water uptake, membrane diffusivity and electro-osmotic drag coefficient (EODC);
 - Compared modeling results with segmented cell data for both serpentine and parallel flow-fields;
 - Completed simulation of GM Down-the-Channel fuel cell and compared with available data
 - Validated modeling result with water balance experiment.

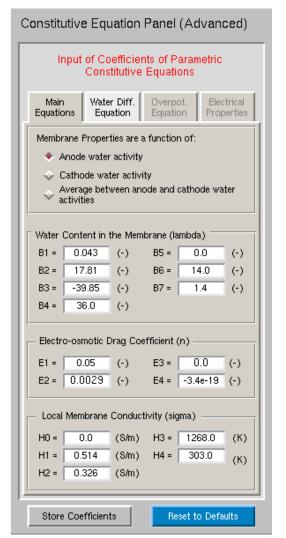
Technical Back Up Slides

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Modeling Input Parameters

GINER - BALLARD - South Carolina - V7 - Tech-Etch -

Material 1: And	ode Side Flu	iid	
Density (rho)	ldeal gas	28.96	g/gmole
Viscosity (mu)	multicomp	1.81e-05	kg/m-s
Conductivity (k)	multicomp	0.02637	W/m-K
Spec Heat (Cp)	constant	1006	J/m-K
Material 2: Catl	node Side F	luid	
Density (rho)	ldeal gas	28.96	g/gmole
Viscosity (mu)	multicomp	1.81e-05	kg/m-s
Conductivity (k)	multicomp	0.02637	W/m-K
Spec Heat (Cp)	constant	1006	J/m-K
Material 3: ME	A Solid		
Density (rho)	constant	200	kg/m^3
Conductivity (k)	constant	0.16	W/m-K
	constant	500	J/kg-K
Spec Heat (Cp)	constant j	500	ong n
Spec Heat (Cp) Material 4: Bip(omg n
			kg/m^3
Material 4: Bipo	olar Solid Pla	ates	-
Material 4: Bipo Density (rho)	olar Solid Pla	ates 200	kg/m^3


Porous Resistance Coefficients					
Porous Media 1: Anode Side GDM					
alpha beta					
X- Direction	0	2.0e+07			
V- Direction	0	2.0e+07			
Z- Direction	Z- Direction 0 2.0e+07				
Porosity Factor	· (-)	0.7			
Effective Cond	uctivity (W/m-K) 0.25			
🔟 User Codi		~			
User Codi Porous Media 2:	Cathode Side	e GDM			
			_		
	Cathode Side	e GDM			
Porous Media 2:	Cathode Side	e GDM beta			
Porous Media 2: X- Direction	Cathode Side alpha	e GDM beta 2.0e+07			
Porous Media 2: X- Direction Y- Direction	Cathode Side	e GDM beta 2.0e+07 2.0e+07			
Porous Media 2: X- Direction Y- Direction Z- Direction	Cathode Side alpha 0 0 0	e GDM beta 2.0e+07 2.0e+07 2.0e+07 0.7			
Porous Media 2: X- Direction Y- Direction Z- Direction Porosity Factor	Cathode Side	e GDM beta 2.0e+07 2.0e+07 2.0e+07 0.7 0.25			

Write Operating Conditions Input	t File			
Operating Parameters				
Initial Cell Voltage for all Cells (V)	0.72			
Membrane Thickness (mm)	0.018			
Anode GDM Thickness (mm)	0.260			
Cathode GDM Thickness (mm)	0.260			
Cell Temperature (C)	80			
Dry Membrane Density (g/cm^3)	2			
Equiv Wt. of Dry Membrane (g/gmol)	1100			
Electrochemical and Kinetic Para	meters			
Open Circuit Voltage (V)	0.92			
Oxygen Exch Current Density (A/m^2)	500			
Hydrogen Exch Current Density (A/m^2)	5000			
Anode Transfer Coefficient (-)	2			
Cathode Transfer Coefficient (-)	0.717			
Hydrogen Inlet Mole Fraction (-)	0.763			
Oxygen Inlet Mole Fraction (-)	0.160			
Other Parameters				
Evaporation / Condensation Rate (/s)	1.0			
Starting Iteration for Reacting Flow	50			
No. of Cells in Z-Dir in the Anode GDM	5			
No. of Cells in Z-Dir in the Cathode GDM	5			
No. of Fuel Cells in the Model				
Average Current Density (A/m^2)				
Auto-adjust Cell Voltage (VCEL)				
Write Operating Conditions Input File				

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Modeling Input Parameters (Cont.)

GINER - BALLARD - SOUTH CAROLINA - V7 - Tech-Etch -

Constitutive Equation Panel (Advanced)
Input of Coefficients of Parametric Constitutive Equations
Main Equations Equation Equation Equation
Water Diffusion Coefficient (D)
G0 = 2416.0 (K) G1 = 1e-10 (m^2/s) G2 = 1e-10 (m^2/s) G3 = 1.25e-10 (m^2/s)
G4 = 303.0 (K)
Membrane Water Content Range (lambda) L1 = 1.67 L2 = 2.0 L3 = 3.0 L4 = 4.5
Store Coefficients Reset to Defaults

Constitutive Equation Panel (Advanced)						
Input of Coefficients of Parametric Constitutive Equations						
Main Equations						
Overpot	ential Equat	ion Term S	election			
	🔳 Ter	m 1				
	🔳 Ter	m 2				
	🔳 Ter	m 3				
	🔳 Ter	m 4				
	🔟 Ter	m 5				
Term 6						
	Term 1 and Term 5 cannot be selected at the same time.					
Term 2 and Term 6 cannot be selected at the same time.						
Please refer to the Methodology section of the Tutorial Manual for a description of the six terms involved.						
Store Coe	fficients	Reset t	o Defaults			

This presentation does not contain any proprietary, confidential,

or otherwise restricted information

Modeling Outputs

GINER - BALLARD - SOUTH CAROLINA - V7 - Tech-Etch -

Scalars	Scalars	Scalars
Active Passive Generic	Active Passive Generic	Active Passive Generic
Active Scalars Description No. Name Nitrogen Gas 1 N2 Hydrogen Gas 2 H2 Oxygen Gas 3 O2 Water Vapor - Anode 4 WVA Water Vapor - Cathode 5 WVC Liquid Water - Cathode 7 LWC	Passive Scalars Description No. Name Current Density 8 CD Net Water Flux per Proton 9 ALPHA Kinetic Overpotential 10 KOP Anode Overpotential 11 AOP Cathode Overpotential 12 COP Membrane Conductivity 13 MC Water Diffusivity 14 WDC Water Content inside MEA 15 LAMBDA Anode Activity 16 AA Cathode Activity 17 CA MEA Liquid Film Thickness 18 LFT Local MEA Voltage* 20 MEA_POTENT. * Only used when Electron Transport is On *	Generic Scalars Description No. Name Potential" 19 POTENTIAL * Only used when Electron Transport is On
Apply	Apply	Apply

This presentation does not contain any proprietary, confidential, or otherwise restricted information