MATERIALS AND MODULES FOR LOW-COST, HIGH PERFORMANCE FUEL CELL HUMIDIFIERS

Principal Investigator: William B. Johnson W. L. Gore & Associates, Inc. May 17, 2012

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

TIMELINE	BUDGET	
✓ Start date: 4/01/2010	✓ DOE share:	\$ 1,492,163
✓ End date: 9/30/2012	🛛 🗸 Cost share:	\$ 373,040
✓~75% complete	Funding received in FY11:	\$ 200,820
	 Funding received in FY11: Planned Funding in FY12: 	\$ 473,642

DOE PLAN BARRIERS ADDRESSED:

✓ System cost, fuel cell performance and durability

Task 7, "Develop balance of plant components"

B - *Reliable, cost-effective fuel cell systems.*

E - System thermal and water management.

A and C (indirectly) – Fuel cell durability and performance.

TEAM and PARTNERS

✓ <u>Project Lead</u> - W. L. Gore & Associates, Inc.

Subcontractor - dPoint Technologies

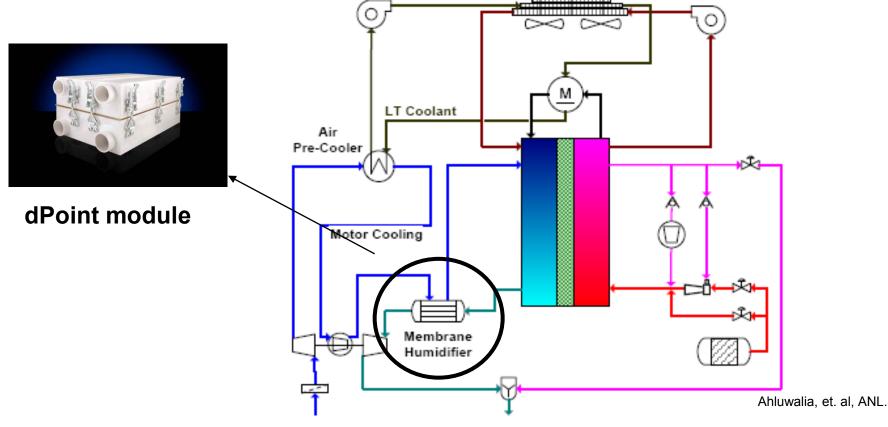
Collaborators (no funding)

Argonne National Laboratories

General Motors Company

Objectives

Demonstrate a durable, high performance water transport membrane; and a compact, low-cost, membrane-based module utilizing that membrane for use in automotive, stationary and/or portable fuel cell water transport exchangers.

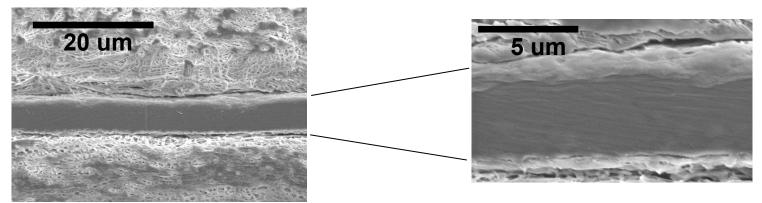

Relevance

More efficient, low-cost humidifiers can increase fuel cell inlet humidity:

- Reduce system cost and size of balance of plant.
- Improve fuel cell performance.
- Potentially decrease size of fuel cell stack by running under wetter conditions.
- Improve fuel cell durability.

Background

Illustrative block diagram of fuel cell system


Approach: Plan

Completion		
80%		
80%		
85%	Go/No-Go 15 months √	
50%	 July 2011 Module Volume < 8 L Module cost < \$150 Membrane life > 5000 h hot soak 	
~75%	 Membrane life>1000 h <i>RH</i> cycling Membrane water transport > 0.030 g/cm²min at 80 °C √ 	
	80% 80% 85% 50%	

Approach: Technical

• Membranes: Utilize unique, high performance, GORE[™] Humidification Membranes

 Modules: Optimize flow field, pleat geometry and module design to take advantage of very high transport rate materials, while maintaining low-cost assembly process

GORE-SELECT, PRIMEA and GORE and designs are trrademarks of W. L. Gore and Associates, Inc.

Technical Accomplishments and Progress Summary of Results to Date

> Testing

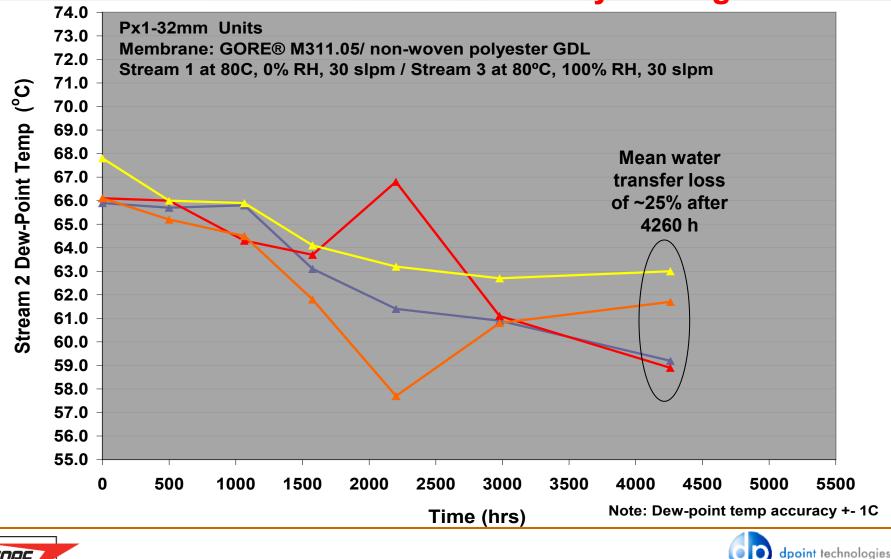
- Pseudo-static water transport test developed that increases testing throughput dramatically (Details shown last year).
 - Currently establishing viability as QC qualification test.

Membrane Performance

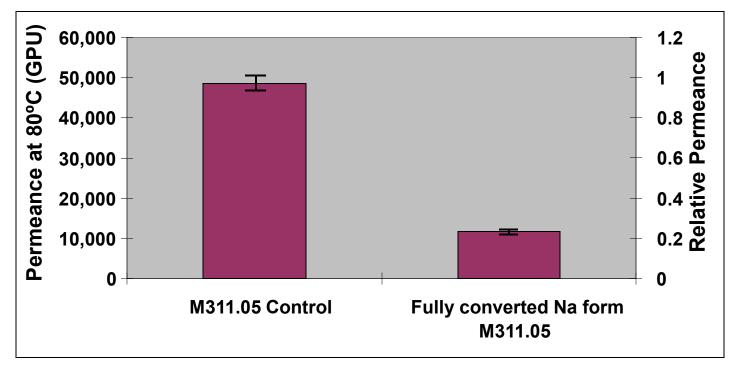
- Water vapor transport properties established very high water transport rates under fuel cell humidifier conditions.
 - Product specifications under development in consultation with customers.

Membrane Durability

- ✓ Over 4000 hours of acceptable module level performance at 80°C.
- ✓ 20,000 cycles achieved in RH cycling in DOE membrane AST.
- Freeze cycling shown last year no transport issues observed.
- Accelerated durability test is in development using a dry, high temperature soak of restrained samples.

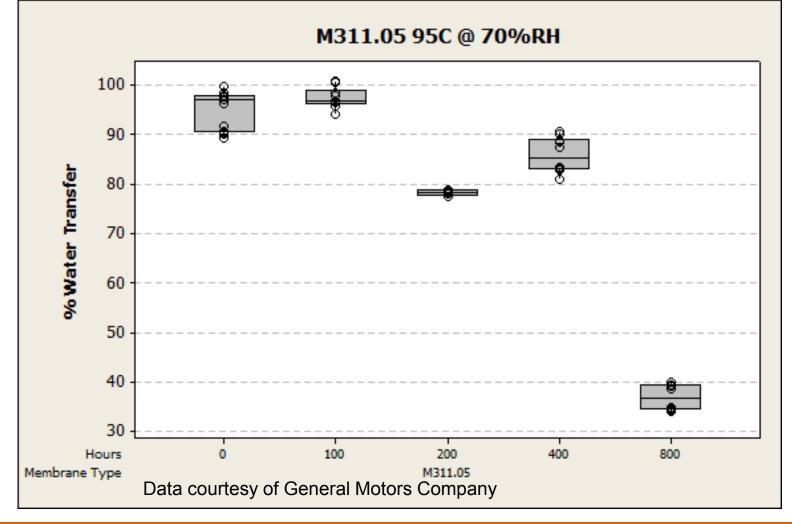

Module Development

- High water transport, cross-flow module that meets all program criteria has been designed and tested at sub-scale.
- Initial full-scale module in process using scalable manufacturing process.


Technical Accomplishments and Progress

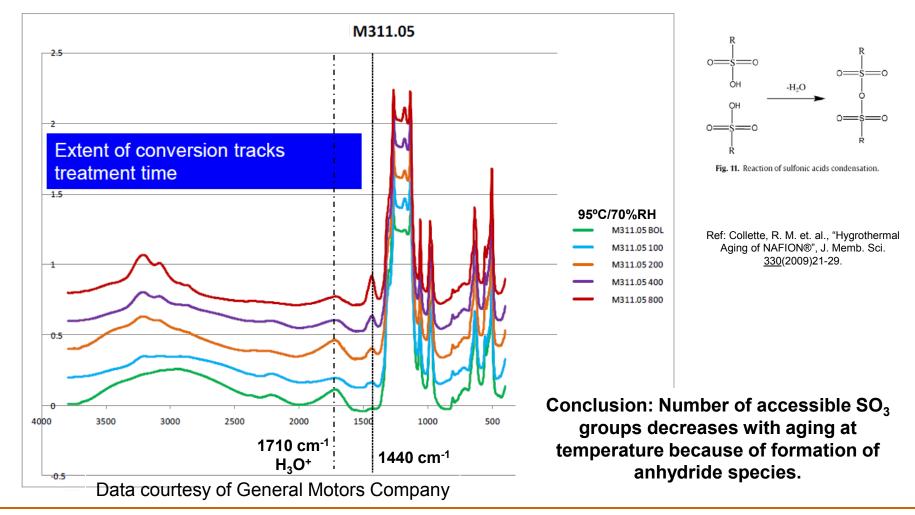
Task 2: Module level Membrane Durability Testing at 80°C

Technical Accomplishments and Progress M311.05 Degradation Mechanism - Contamination

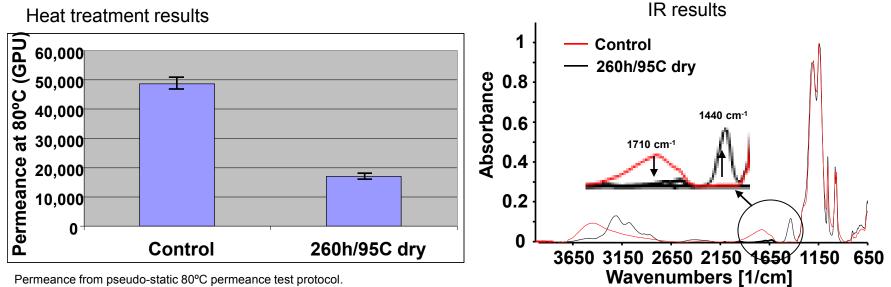


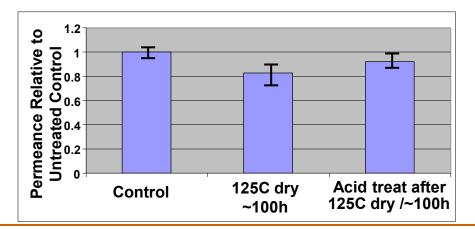
Permeance from pseudo-static 80°C permeance test protocol.

- Gore has not observed contamination related degradation in our testing, but some of our customers have.
- This degradation mechanism is controllable minimize presence of ionic contaminants, e.g., Na, Mg, K, etc.

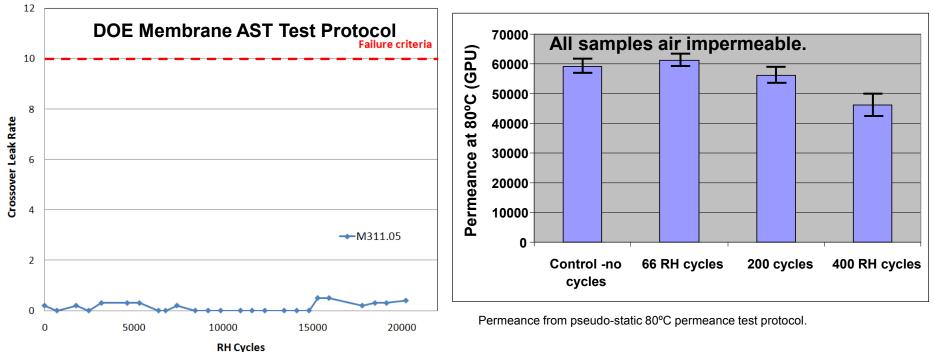


Technical Accomplishments and Progress Task 2: Durability Testing at 95°C in Wet Conditions




Technical Accomplishments and Progress Degradation Mechanism - Chemical Changes in PFSA lonomers

Technical Accomplishments and Progress Ex-Situ Accelerated Durability Test: Dry Hot Soak


Permeance from pseudo-static 80°C permeance test protocol.

Acid heat treatment largely reverses the effect of dry, hot-soak treatment of M311 materials.

Consistent with literature results: Collette, R. M. et. al., "Fuel cell rejuvenation of hygrothermally aged Nafion®", J. Power Sources. 202(2012)126-133.

Technical Accomplishments and Progress Task 2: RH Cycling Membrane Durability Testing at 80°C

Data courtesy of General Motors Company from DOE membrane AST protocol.

Gore permeance data generated on restrained M311 materials after testing in environmental chamber (80°C/88%RH<->20%RH over ~3 hour cycle).

Technical Accomplishments and Progress Task 4: Module Modeling & Experimentation Approach

- Analytical
 - Module control volume calculator based on stack conditions
- CFD analysis
 - Mass transfer and pressure drop of flow field features
 - Housing flow distribution
- Experimental
 - Pressure drop and mass transfer tests of 23 flow fields
 - Multiple sub-scale cartridges tested in various housings
- Hybrid Analytical / Experimental Calculator
 - Module architecture and characteristic dimensions input
 - Pressure drop calculated using analytical methods
 - Performance estimated using results of module tests

Technical Accomplishments and Progress Task 4: Module and Design Specifications

Typical Automotive Module Specifications				
Module Parameters				
Pressure differential across membrane Temperature transients Total module volume incl. manifolds Allowable pressure drop on either side Projected lifetime Min temperature capability Process Flow Cross over	0.25 - 0.7 bar Short term, up to 110 - 125°C 8 L 0.1 bar 5000 - 6000 hours -40°C <1-3 % at rated flow & pressure			
Wet Side Parameters (Stack outlet)				
Temperature	80 – 83 °C			
Flow rate	280 - 350 kg/h dry gas			
Pressure	1.3-1.5 bar			
IDew point	70 - 75°C (66-80% RH at rated temperature)			
Dry Side Parameters (Stack inlet)				
Temperature	80°C			
Pressure	1.8 - 2 bar			
Dew point	55-56°C (25-30% water recovery)			

Technical Accomplishments and Progress Task 4: Cartridge Concept Selection

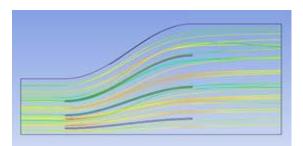
Single cell testing and CFD reveals pitch is paramount

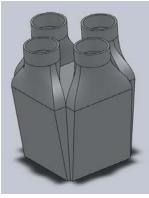
- Small linear channels have excellent transfer per pressure drop versus featured channels
- ✓ Small pitches are advantageous for volume and cost
- Above considerations to current configuration: membrane pocket over plate assembly concept.

✓ Adhesive choice to form membrane pocket is critical issue.

 Testing protocol to evaluate pockets developed – led to leading candidate, silicone adhesive.

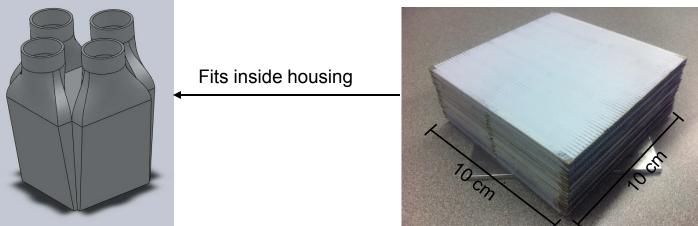
Cross flow Cartridges


- Theoretically have 96% Log Mean Vapor Pressure Drop (LMVPD) of counter flow at 25% Water Recovery Ratio (WRR)
- ✓ Ability to have very short channels
 - Easy to Manufacture



Technical Accomplishments and Progress Task 4: Module Housing Design

- Validated compact housing with vanes to distribute flow
 - Was able to match performance of normal flow distribution housing within volume constraints of project
- Found vanes themselves had insignificant effect on performance relative to their manufacturing difficulty
 - ✓ Vertical flow distribution within cartridge is more important than lateral
 - Redesigned housing to be die cast-able which is economical. Maintains vertical flow distribution with small change in lateral flow distribution
 - Expected performance difference is small subject to validation
 - ✓ FEA used to calculate required wall thicknesses



Technical Accomplishments and Progress Task 4: Sub-scale Longevity Testing

- Completed a sub scale cartridge for longevity testing
- > Utilizes latest assembly techniques
 - Welded pocket with silicone primary seal
 - ✓ H-profile plates
- Performance and leak rate evaluated periodically
 - Leak rate low (< 0.5%) through initial 150 hours of testing.</p>
 - ✓ Performance acceptable and as expected from previous work.

Accomplishments and Progress Task 3: Humidifier Module Cost Model

Category	Est	. Cost*
Housing	\$	15
Inserts/Flow fields/membrane	\$	32
Miscellaneous assembly components	\$	1
Overhead/Labor	\$	23
	\$	71
40% Contingency to reflect early stage design		28
TOTAL COST	\$	99

* 500, 000 units, 3 year equipment amortization, on DOE-funded dPoint automotive module design that has been validated by CFD and ¼ scale module builds. Equipment amortization as needed is included in each cost category.

Future Work

- Membranes
 - Complete accelerated dry, hot soak testing, and establish correlation with actual humidifier testing.
 - ✓Validate pseudo-static water transport test for QC.
 - Complete process validation for final manufacture of membranes for final module build.
- Module Design/Build
 - Complete exploration of alternative pocket forming methods and longevity testing.
 - ✓Validate ability to die cast housing geometry.
 - ✓Assemble sub-scale prototypes for external (customer) testing.
 - Establish final design parameters for full scale humidifier based upon validated sub-scale performance.
 - Build full scale prototypes for external testing.
 - Finalize module cost model using final design parameters and process.

Collaborations

Subcontractor

- dPoint Technologies
 - Design and build low-cost module using new membrane

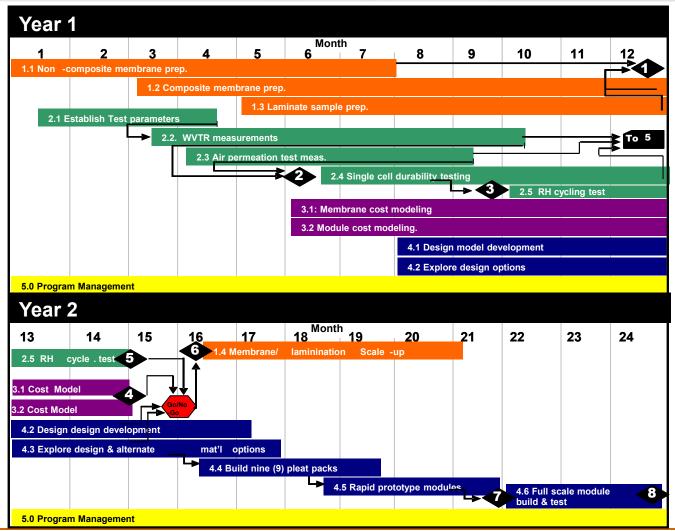
Partners providing Input at no cost

- Automotive OEMs have provided data on conditions
 - GM, Ford, Daimler, Volkswagen, etc. under NDA
- Argonne National Laboratory modeling of Gore membranes in humidifier modules.
- General Motors Corporation support in testing and analysis of humidifier membranes.

Project Summary

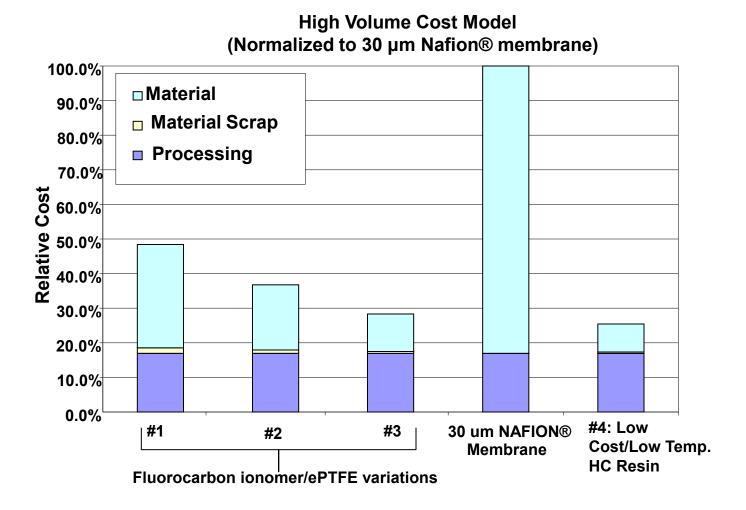
Objective:	Durable, high performance water transport membrane; and a compact, low-cost, membrane-based module	
Relevance:	Reduce system cost and size of balance of plant, AND improve fuel cell performance.	
Approach:	Utilize unique new Gore membranes in modules optimized for high performance and low cost.	
	Membrane development nearing completion, with high performance cost-effective material identified. Scale-up of this material underway.	
Technical Progress:	Performance and durability testing of identified membrane nearly complete. Module performance consistent with single cell and ex-situ testing shows loss of performance of 20-30 % over 5500 hours.	
	Developed understanding of source of durability loss – chemical changes in PFSA.	
	Sub-scale module design complete, and sub-scale prototypes built and under test.	
	Module cost estimated to be ~\$100 at high volumes.	
	>dPoint (partner in testing and module design and build).	
Collaborators:	Argonne National Laboratory (No cost collaborator in system modeling).	
	≻General Motors Company (No cost collaborator).	
	Complete membrane durability testing.	
Future Work:	Scale-up membrane manufacturing for final module build.	
	Finish sub-scale validation testing.	
	Build final full scale module.	

Technical Back Up Slides

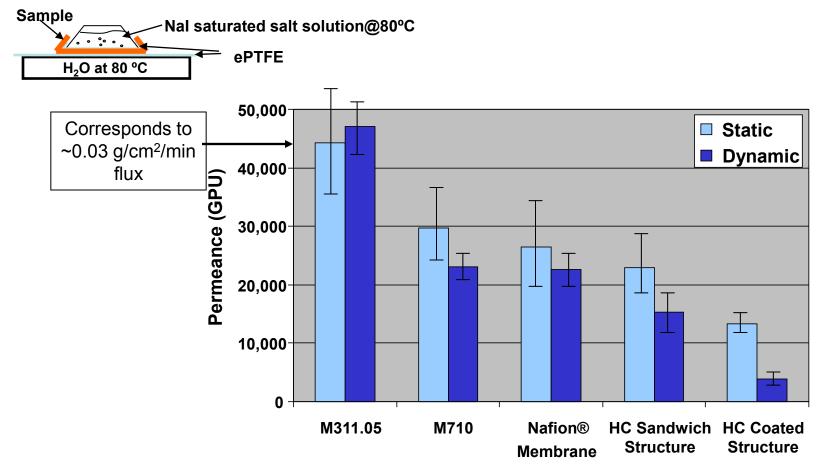


Proposed Final Project Targets

Specific Target	Value*	Rationale
Beginning of life membrane	> 0.030 g/cm2-min at 80 °C	Small humidifier footprint;
performance (flux):	and gas impermeable (Gurley	Improved stack performance
	> 10,000 s)	
Projected membrane durability	 Projected < 25% performance loss after 5000 h hot soak at 80 °C Projected < 25% performance loss after 1000 h RH cycling Gas impermeable (Gurley > 10,000 s) after above tests. 	Automotive lifetime



Approach: Timeline and Milestones



Technical Accomplishments from Previous Period Task 3: High Volume Membrane Cost Estimates

Technical Accomplishments from Previous Period Performance Testing: Modified Static Testing Permeance: Static

Technical Accomplishments from Previous Period Task 4: Projected Cartridge Specifications

- Based on flow field and earlier sub scale testing, concluded:
 - \checkmark ~ 2 m² membrane required, with volume of < 8 L.
 - ✓ To compensate for loss of permeation with time, the cartridge is over sized, so system may require feedback control to ensure over humidification does not occur at beginning of life.
 - ✓ Size increase for unexpected losses in scale-up also included as contingency.
- Pressure drop: ~0.08 bar secondary, ~0.03 bar primary
 - \checkmark Pressure drop competes with volume and unit cost

