

WØ₃ and HPA based systems for durable Pt catalysts in PEMFC cathodes

2012 DOE Hydrogen and Fuel Cells Program Review

John Turner

May 15th, 2012

FC084

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

Timeline

- Start Date: 05/01/2010
- End Date: 04/30/2014
- Percent Complete: 40%

Budget

- Total project funding: \$2.9M
 - DOE share: \$2.6M
 - Cost share
 - CSM: \$204,315
 - CU: \$54,000
- Funding received in FY10: \$500k
- Funding received in FY11: \$550k
- Planned Funding for FY12: \$975k

Barriers

- Durability
- Cost
- Performance

Partners

- S. George: UC Boulder
- A. Herring: CSM
- S. Hamrock: 3M
- K. Adjemian: NTCNA
- Tanaka Kikinzoku Kyogo (TKK)

Project lead – NREL

(John Turner, Anne Dillon,

Katie Hurst, Bryan Pivovar,

K.C. Neyerlin, Jason Zack, and Shyam Kocha)

Relevance: Objectives

Improve electrocatalyst, MEA durability, and activity through the use of Pt/WO₃ and HPA modification to approach automotive PEMFC activity (**0.44 mA/mg**_{Pt}) and durability targets (5000h/10y).

- Enhance Pt anchoring to support

- Suppress loss in Pt ECA under load cycling operations
- Enhance electrocatalytic activity

Lower support corrosion

- Increased durability under automotive startup/shutdown operation.
- Suppress Pt agglomeration/electrode degradation

Simplify system and lower system cost

Polymer Electrolyte Fuel Cell Degradation, Editors: Matthew M. Mench, Emin Caglan Kumbur, T. Nejat Veziroglu, Chapter 3, S. Kocha, Electrochemical Degradation: Electrocatalyst and Support Durability (2012)

Approach

Hot wire WO_3 to CU for Pt ALD deposition

- 1. Prepare Pt nanoclusters on WO₃
- Analyze the structures formed using FTIR, XPS, SEM, TEM, Raman, etc.,
- 3. Measure Pt particle size, BET, etc.,
- Provide samples to CSM & NREL

Hot wire WO₃ to CSM for HPA modification and Pt deposition

Synthesize WO₃

NREL & CSM

Characterize $WO_3 \& Pt/WO_3$ for

- Conductivity
- BET surface area

- TEM

CSM – Andy Herring

- 1. Synthesize HPA
- 2. Immobilize HPA to Pt/C
- 3. Prepare Pt nano/C
- 4. Immobilize HPA to C
- 5. Prepare Pt nano/HPA-C
- Immobilize/ Covalently bond HPA to WO₃
- Prepare Pt nano/HPA- WO₃
 Prepare Pt nano/HPA- WO₃
 hybridized with HPA-C
- 8. Alternative WO₃ synthesis

NREL

Electrochemical Characterization

Official Milestones for FY 12

- 5.7.1 Establish at least 2 standard test protocols to evaluate and benchmark the durability of alternative Pt supports. 12/11 Completed
 - 5.7.2 Obtain cyclic voltammograms (CVs) and mass activity for Pt on WO_3 , HPA, or a combination of the two with electrochemical surface areas greater than 25 m²/g Pt. 4/12 "yes"(ECA)
 - 5.7.3 Demonstration of controlled nano-structured Pt placement and loading on WO₃, HPA, or a combination having mass activity (0.28 A/mg Pt @ 900 mV iR-free) comparable to baseline Pt/C (DOE Status). 9/12 Not yet

Protocols for Electrocatalyst/Support Durability Evaluation

Start-up/Shut-down Regime

—Support degradation —Pt agglomeration

Normal Operating Regime

Durability Working Group Co-chairs: Debbie Myers & Rod Borup
Team for catalyst supports
Shyam Kocha (NREL)—Lead
KC Neyerlin (NREL), Eric Brosha (LANL), Mahlon Wilson (LANL), Lior Elbaz (LANL), Nilesh Dale (NTCNA), Vijay
Ramani (IIT).

	Nissan	NREL	DOE
Temp	60°C	Room Temp	Room Temp
Scan Rate	500 mV/s	100 mV/s	1.2 V Hold
No of Cycles	5000 Cycles	6000 Cycles	No Cycles
Total time for test	~ 8 Hrs	~ 24 Hrs	~ 400 Hrs

Protocol Comparisons – Nissan Results

60 **54.79% 53.76%** Nissan Protocol (~ 8Hrs) NREL Protocol (~ 24 Hrs) 50 DOE Protocol (~ 400 Hrs) **39.21% 39.11%** 40 % Loss 30 26.9% 25.62% 23.91% 20 17.43% 11.46 % 10 0 **ECA Area Specific Activity Mass Specific Activity**

- Nissan and NREL protocols result in comparable losses for ECA, i_s and i_m.
- Nissan protocol (60°C) takes only 8h due to higher temperature accelerant
- NREL protocol is conducted at RT and takes 24 h using low scan rate accelerant.

Synthesis

HWCVD Production of Tungsten Oxide Nanostructures

Synthesis at 150 Torr 4% O_2 in Ar, filament temperature ~ 2000°C.

300 °C

30 °C

30 °C 4 sequential depositions

Dramatic change in particle morphology

- Lower furnace temperature
- Sequential depositions lead to rod growth

A.H. Mahan, P. A. Parilla, K.M. Jones and A.C. Dillon, Chem. Phys. Lett. 413 (2005) 88.

Stoichiometry of WO_x Controlled by Oxidation in Air

 58.7 m²/gwox
 49.0 m²/gwox
 47.9 m²/gwox
 26.0 m²/gwox

 No anneal
 400°C
 400°C
 700°C

 15 min
 60 min
 10 min

Different oxide stoichiometries are made by annealing in air. Hot-wire grown at RT is $WO_{1.7}$ (TGA)

NEXAFS data from SLAC to give us oxygen bonding

Tungsten Oxide Wet Chemistry Synthesis

NATIONAL RENEWABLE ENERGY LABORATORY

HPA Functionalization of Carbon and WO₃

Immobilized HPAs as Catalyst Supports

- Stabilize nano-metallic particles
- Decompose peroxide
- Alter electrochemistry on Pt surface
- Conduct protons

Carbor

HPA functionalization of Carbon black confirmed by EDX spectra.

Carbor

Pt Colloid Synthesis

A literature recipe* was modified significantly to synthesize size-controlled Pt nanoparticles by:

- Decreasing the temperature to 80°C
- Bubbling dilute CO into solution
- Gradually adding 0.25M NaOH over 3h

*Wang, Y.; Ren, J.; Deng, K.; Gui, L.; Tang, Y. Chem. Mater. 2000, 12, 1622.

Results of Pt/HPA-C Preparation

- Dispersion of HPA-C material in water via ultrasonication (20 minutes)
- Addition of Pt colloid followed by ultrasonication for an additional 20 min
- Catalyst separation via Buechner filtration
- Drying at 200°C for 2 h

STEM EDX analysis, FEI F20 UT, 200 kV, spot size 7, from red square area

Progress of Pt ALD on WO_x materials

With a higher flux (higher precursor temp) the nucleation was more uniform, leading to smaller particles throughout the sample.

Saturated exposure leads to more uniform coverage

60 Cycles Pt precursor temperature = 70°C (14.1 wt% Pt) Initial ALD resulted in high Pt loading with large particle sizes.

NREL Atomic Layer Deposition of Pt

Current deposition capabilities

Smaller Pt particle size

Demonstrated Pt loading 1 – 23 wt% (not controlled)

Continue to increase the uniformity of Pt coverage.

Pt ALD on WO₃ – Scaling with Dual Rotary Reactor

Dual rotary reactor for uniform Pt particle growth on WO₃ nanorods at large scale.

- Computer controlled spinning enables uniform deposition.
- This system can hold a volume of 60 cm³.
- Based on the powder density of WO₃, This corresponds to ~ 420 g / deposition.

New NREL Rotary ALD system for uniform scalable Pt deposition on WO_x Powders

Able to coat powders or flat surfaces Equipped for two heated and two room temperature precursors Reactor volume ~100 cm³

Funded by NREL LDRD

Electrochemical Characterization

Results: ECA Determination of Pt/WO_x

Results of Cu UPD on Pt/Vu Electrocatalysts

Cu UPD on Pt/WO_x Electrocatalysts

^{c)} From TEM^{d)} from XRD

Results: Conductivity of WO_x

Results for Mass Activity: Pt/WO_x

Results: Impact on Mass Activity for HPA Loading on Carbon

	6,000 cycles	30,000 cycles
	1.0-1.6 V	0.6-1.0 V
Pt/C	57%	52%
Pt/HPA-C	92%	71%

7% HPA on carbon, mass activity retention (NREL Protocol)

NATIONAL RENEWABLE ENERGY LABORATORY

Pt/C after 0.6-1.0 V cycling

Pt/HPA-C after 0.6-1.0 V cycling

Pt/SnO₂ Electrocatalysts

NATIONAL RENEWABLE ENERGY LABORATORY

Pt/SnO₂ Electrocatalysts: ORR Activity

Baseline Pt/C 29% Pt/SnO2 29% Pt/SnO2 12% Pt/SnO2+C 23% Pt/SnO2+ C

Lower electronic conductivity—one of the causes for lower activity of Pt/SnO₂ electrocatalysts; the other being electrode dispersion.

Pt/SnO₂ Electrocatalysts: Cyclic Durability

- Protocol (0.6–1.0V, RT, 500 mV/s) applied to baseline Pt/C and Pt/SnO₂ show similar losses in ECA. Losses are likely to be due to Pt dissolution which is independent of the support.
- Protocol (1.0V–1.6V, RT, 100 mV/s) applied to baseline Pt/C and Pt/SnO₂ show higher losses for Pt/C catalysts since the SnO₂ support is more corrosion resistant.

Collaborations

• CU Boulder: subcontractor – University

- ALD growth of Pt on WO_x
- CSM: subcontractor University
 - Synthesis of WO₃ and preparation and attachment of HPA to Pt/WO₃

• 3M: subcontractor – Company

- Advice on thin films electrocatalysts

• NTCNA: consultant – Automotive Company

- Support on fuel cell testing & AST protocols
- Tanaka Kikinzoku Kyogo (TKK) Commercial Electrocatalyst Manufacturer

Future Work (2012)

- 1. Complete a systematic conductivity of WO_x films with and without conductive matrices to guide catalyst ink formulations.
- Improve wet-chemistry Pt deposition and ALD Pt deposited on WO_X and characterize electrochemically with and without a conductive matrix to obtain mass activities <u>comparable to Pt/C</u>
 - Decision on ALD Pt/WO_x vs. wet-chemistry Pt/WO_x for meeting program goals (December 2012)
- 3. Evaluate alternative catalysts such as Pt-alloys (on WO_x + conductive matrix) in RDE for higher activities. (2013)
- 4. Scale-up selected electrocatalyst system synthesis process to prepare Pt/WO_{X} + conductive matrix in gram quantities for MEA preparation (2013, 2014)
- 5. Evaluation of HPA incorporation into catalyst layers of MEA to ascertain proton conduction and durability impacts (2013, 2014)
- 6. Optimize catalyst inks for MEA preparation and evaluation in subscale cells. (2013, 2014)

Summary

- 1. WO_X was prepared using HWCVD having BET surface area of ~ 50 m²/g; WO_X also prepared using wet-chemistry techniques
- 2. CU-Boulder deposited Pt using ALD:
 - These materials did not initially produce small and uniform particles of Pt/WO_x
 - On refinement of the ALD conditions, smaller particles of Pt were obtained
 - The wt% of Pt/WO_x is still very low and not suitable for electrochemical characterization
 - A rotary system is being used currently to increase the yield of ALD Pt/WO_x and improve the Pt particle distribution
- NREL also attempted ALD of Pt/WO_x; these materials had a reasonable Pt wt % and electrochemical characterization resulted in a mass activity of ~100 mA/mg (ALD Pt/WO_x with inclusion of carbon black)
- 4. Conductivity of WO_X pellets was measured using Vander Paw technique as well powders in an inhouse conductivity cell.
- 5. AST protocols for evaluating durability of alternative supports were developed with the DWG
- 6. ECA issues were addressed using three different protocols.
- Pt colloids were prepared (CSM) that were subsequently deposited on HPA functionalized C; these materials were electrochemically characterized and exhibited ~15–20% higher mass activity that Pt/C and improved durability under cycling.
- 8. Pt/SnO₂ obtained from a commercial catalyst supplier (TKK) was evaluated in RDE. These catalysts also achieved activities comparable to baseline Pt/C after the inclusion of graphitized carbon black to the ink formulation. These materials demonstrated higher cyclic durability compared to baseline Pt/C

Supplemental Slides

1. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, H Gasteiger, S Kocha, B Sompalli, F Wagner, Applied Catalysis B Environmental (2005), Volume: 56, Issue: 1-2, Publisher: ELSEVIER SCIENCE BV, Pages: 9-35.

- 2. Examination of the activity and durability of PEMFC catalysts in liquid electrolytes, Ikuma Takahashi, Shyam S Kocha, Journal of Power Sources (2010) Volume: 195, Issue: 19, Publisher: Elsevier B.V., Pages: 6312-6322.
- 3. Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction, Yannick Garsany, Olga A Baturina, Karen E Swider-Lyons, Shyam S Kocha, Analytical Chemistry (2010) Volume: 82, Issue: 15, Publisher: AMER CHEMICAL SOC, Pages: 6321-6328.
- 4. K.C. Neyerlin, Jason Zack, Bryan Pivovar, Shyam Kocha, NREL ECS Abstracts and Meetings 2010, 2011.

Literature on Oxide Supports 2012

Reference	System Evaluated	Key Results: d _p , ORR Activity, e-conductivity
Z. Sun, H. C. Chiu, A.C.C. Tsueng— <i>Univ. Greenwich,</i> UK	10wt% Pt/WO₃/C 0.5M H ₂ SO ₄ ;	d _p = 1–3 nm ORR Activity Pt/WO ₃ /C > Pt/C
Shim, Lee, Lee, Cairns <i>LBNL—2001</i>	Pt–WO ₃ /C; Pt–TiO ₂ /C PEMFC	ORR activity $Pt-WO_3/C = x3 Pt/C$
Saha, Banis, Zhang, Li, Sun, Cai, Wagner— <i>General Motors</i>	15 mm long, 20–60 nm dia Nanowires W ₁₈ O ₄₉ Grown on carbon microfiber paper	d _p = 2–4 nm ORR activity Pt/W ₁₈ O ₄₉ on C = x4 Pt/C
Suzuki, Nakagawa, Ishihara, Mistushima, Ota—Yokohama Nat'nl Univ.	Pt/WO ₃ ; Pt/V ₂ O ₅ , Pt/SnO ₂ ; Pt/Cr ₂ O ₃ ; Pt/GC RF Sputtering onto C	ORR activity Pt/V ₂ O ₅ > Pt/WO ₃ = Pt/C
Savadogo and Beck Ecole Polytech, Quebec	5%Pt- 40%WO₃ PAFC, 180°C	ORR activity ~ x2 Pt/C
Huang, Ganeshan, Popov; — Univ. S. Carolina	Rutile Phase–Nb_{0.25}Ti_{0.75}O₂ 0.5M H ₂ SO ₄ ; RDE	d _p = 3-4 nm ORR Activity Pt/Nb _{0.25} Ti _{0.75} O ₂ = x1 Pt/C

Equal or enhanced ORR electrocatalytic activities have been reported in the literature– generally requiring a conductive matrix like carbon black or doping of the oxide support and often have been compared to Pt/C that have lower values than obtainable today for commercial electrocatalysts.

Optimal Synthesis Conditions Result in a Single Crystalline Phase

NATIONAL RENEWABLE ENERGY LABORATORY

Pt ALD Reaction Sequence

D.N. Goldstein, S.M. George *Appl. Phys. Lett.* 143106 (2009) **95** D.N. Goldstein, S.M. George *Thin Solid. Film.* 5339 (2011) **519**

HPA Background

• Benefits

- Acts like 1 nm spheres of WO_x
- Enhances the ORR
- Stabilizes Pt nano-particles
- Decomposes peroxide
- Improves CO tolerance
- Excellent proton conductors

• Challenges

- Soluble in water
- Possible mass transport issues

Challenges may be overcome by immobilizing HPA via covalent linkages to the carbon

Wlodarczyk, R.; Chojak, M.; Miecznikowski, K.; Kolary, A.; Kulesza, P. J.; Marassi, R. *Journal of Power Sources* **2006**, *159*, 802. Guo, Z.; Han, D.; Wexler, D.; Zeng, R.; Liu, H. *Electrochimica Acta* **2008**, *53*, 6410.