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Overview f\l A
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BERKELEY LAB

Timeline Barriers Addressed

* Project start date: Oct 2011 » Fuel-cell cost: expansion of cost envelop to
- Project end date: Sept 2016 total cost of ownership including externalities

. Percent complete: 5%  Lack of High-Volume Membrane Electrode
Assembly Processes
Budget » Lack of Hig_h-Speed Bipolar Plate
Manufacturing Processes
« Total project funding
— DOE share: $ 1.904M Partners
— Contractor share: n.a.  University of California Berkeley
« Funding received in FY11: $100k * Department of Mechanical
Engineering

« Planned funding for FY12: $460k

 Laboratory for Manufacturing
and Sustainability

 Transportation Sustainability
DOE Cost Targets Research Center
Characteristic 2015 Target |2020 Target « Ballard Power Systems
10kW CHP System |51900/kW_ |51700/kW » Other Industry Advisors (UTC, Nuvera,
100kW CHP System |$2300/kW |$1000/kW Altergy)
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Relevance & Goals

A
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Total-cost-of-ownership (TCO) modeling tool for design and manufacturing of
fuel cells in stationary and materials-handling systems for emerging markets

Expanded framework to include life-cycle analysis (LCA) and possible ancillary

financial benefits, e.g.:

« carbon credits, end-of-life recycling, reduced costs for building operation

Identify system designs that meet lowest manufacturing cost and TCO goals as a
function of application requirements, power capacity, and production volume

Provide capability for sensitivity analysis to key cost assumptions

BARRIERS

« High capital and installation
costs.

« Potential policy and incentive
programs may not value fuel-
cell (FC) total benefits.

PEM - STATIONARY CHP

PRODUCTION VOLUME (UNITS/YR)
SIZE (KW) 100 1,000 10,000 50,000
1
10
50
100
250
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Chemistries and applications ey

* Fuel cell types to be considered:
— Conventional PEM fuel-cell technology (~80°C )
— High-temperature PEM fuel-cell technology (~180°C )
— Solid-oxide fuel-cell technology (SOFC)

PRODUCTION VOLUME
APPLICATION SIZE [KW] (UNITS/YEAR)
. . 100 1000 10,000 50,000
« Application Space: 1 xx  x x
PRIMARY POWER 10 X X X X
BACKUP POWER 50 X X X X
CHP 100 X X X X
250 X X X X
PRODUCTION VOLUME
APPLICATION SIZE [KW] (UNITS/YEAR)
100 1000 10,000 50,000
1 X X X X
LIFT-TRUCK SYSTEMS 5 X X X X
10 X X X X
PRODUCTION VOLUME
APPLICATION SIZE [KW] (UNITS/YEAR)
100 1000 10,000 50,000
DIESEL AUX POWER UNITS ; i z z z
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Research and Modeling Approach: L
Task Flow

1. Aszess markets

Functional specs !
.|, BOPreguirements ;

UCB, LBL, BPS 2. Derive design . UCB, LBL
specifications !
UCH, LBL, BPS 3. Design e E

BOM/architecture

Materials
Com ponents
J, Configuration

UCB, LBL, BPS 3 Develop processplans | = =

6. DFMA optimization

Unit processe
\l_. Make vs. buy

wn

ucCs, LBL, BPS

4 Facility cost modeling

-

Manufacturedh,
. cost A

-

T

Operations & end of Life

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
1
Life cycle impacts and !
externalities '
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Task participants:
LEL=_Lawrence

BerkeleyLab BOM: Bill of materials

LUICE = UC Berkeley . . .
BPS = Ballard Power DFMA: Design for manufacturing and

Systems assembly
Task leads in bold TCO: Total cost of Ownership

- 7> =model outputs

LBL, UCB ——>

Incentives/ benefits

5. TCO modeling

LBL, UCE — 7.Integrated user model
Sensitivity analysis
Scenario analysis

Risk and uncertainty analysis

Data quality assessment
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Research and Modeling Approach: L,
Inputs and Tools

Literature and ' 1.Assess markets &
Patent Sources l‘ Functional specs
DER-CAM (CHP N I’ BDPrequirEmEntsi
Apps) e | Boothroyc
i ; | .| €= Dewhurst DFMA®
i 3. Design PN Software
Lit./Patent sources I BOM/architecture ) . )

Vendor quotes NI Materials |

Industry advisors Components

+J+ Configuration |

3.Develop processplans | = =

6. DFMA optimization

Unit processes

» Makevs. buy
"‘r-—_:*'_} K

4 Facility cost modeling

Jr

r’ﬂﬂdﬂnufﬂtturéa“ :
4 Operations & end of Life

Exposure /Impact>=---" | A
Models and tools ' | | Lifecycle impacts and LCA database tools,

- externalities
e.g. Tom McKone q Integrated
Model | Incentives) benefits Model in Analytica

5. TCO modeling

.  7.Integrated user model

i Sensitivity analysis

! Scenario analysis

! Risk and uncertainty analysis
Data quality assessment
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Research and Modeling Approach: /\l ‘/\

Functional Flow

Coupled “Fuel Cell Total Cost of Ownership
(TCO) and Environmental Lifecycle Impact
Assessment (LCIA) Model”

____________________________

Manufacturing
Flows and _ | TCO metrics (e.g.,
DFMA Analysis ; | levelized $/kWh cost,

i | total cost per year, etc.)

Pmtotyplcal é R
- & LCIA Model |
/I\ (Analytica) | ;

__________________________

| LCIA metrics (e.g., GHG
emissions per year,
_ 1 pollutants, monetized
health impacts, etc.)

Literature and

Functional

Exposure}’impacts
models and info.
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Research and Modeling L
Approach: FY12 Focus Areas

| | TCO Model |
Manufacturing | | | Detailed Parts - (Analytica) l
Flowsand | | ' and Matl’s Lists | | | TCO metrics (e.g.,
DEMA Analysis | | i . | levelized $/kWh cost,
| § i . | i total cost per year, etc.)
= - = e e e T o == = i 1'l: :
I U | Costs of materials and I |
E PrDtprica[ e arrhacsd o na o e E
I;  System Model - — LCIA Model |
| : Vendor quotes 1‘pf‘ . i
| i u I (Analytica) |
I Literatuieand ] i | LCIA metrics {e.g., GHG
I I i emissions per year,
Patent Sources I e i pollutants, monetized
I I health impacts, etc.)
l Expcﬁulafimpacﬁ
I models and info.
I - O S S S S . . . .. I
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Advanced Life Cycle Assessment (LCA) for /\I .
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Technology Characterization

Technology Life Cycle System
System Inputs

1
| .
I I_%
_ : -y :
Materials® —> Raw Materla\lI/s Acquisition c| |
1 O . >
V\I/:atelr* — Manufacturing g L
uels ; v o) !
_ﬂ a .
Energy ) Use/Maintenance 2
Land* | N3 g S
. . . el I
— End of Life Disposition s
| .
R —>
* Systems that are currently poorly characterized

BERKELEY LAB

System Outputs

GHG emissions
Atmospheric emissions*
Waterborne emissions®
Energy

Solid waste*
(Co)products

Land emissions*

Spatial considerations (status quo = most LCAs ignore spatial aspects)

[ Modeling scales: Local - Regional - National - Global ]

Temporal considerations (status quo = most LCAs are static)

[ Modeling scales: Short-term (5-10 years) - Mid-term (10-25 years) - Long-term (25+ years) ]
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System Design N

« We will be defining system design by technology and application
» Key part of cost analysis and Q2 focus area.

Stationary SOFC PEM
\. High-pressure
Air L —n _ Hydrogen Pressune regalator
E £ store .
i : @ Fuel cell stack -
Electricity i 1‘):; Electrolyte
ta grid & B Preraformer,
= £ start-up haater athode IE)-ch ”
B H =
B H PER fuel .
) @ Exhaus! Coolerfurnidifier el = air and
. =
Warm water wapaur
Warm water storage
lo user d.c. a.c. inverter, Mator
J_J control systam
Burner for
heating wnit ! Compressor
Airintake
Fuel Cell Handbook (2010) Fuel Cells Explained (2004)

Will add cooling system, inverter,
stack sensors & control module as
appropriate per application.
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* Annual Review May 2012: Literature review including review of Fuel Cell
design and manufacturing patents

High Level Milestones eece]

* Yr 1: Technical and performance specifications for technology/application
anchor points; detailed design plans and technology bill of materials
(BOMSs) for low temp PEM; Ballard and other industry partners
engaged

* Yr 2: All BOMs and manufacturing flows completed; manufacturing and
operation cost model

* Yr 3: Design for manufacturing and assembly (DFMA) analysis and TCO
model complete for low- and high-temperature PEM systems

* Yr4: DFMA analysis and TCO modeling modules completed for SOFC
systems

* Yr 5: Update cost model modules and DFMA analysis; all scenario and
sensitivity analysis completed

LAWRENCE BERKELEY NATIONAL L ABORATORY I
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Approach: 2012 Milestones

-
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# | Date Milestones Status
B 1 |Mar-12 + Conduct comprehensive review of fuel cell and fuel processor IN PROGRESS
design and manufacturing patents for 3 fuel cell system types * Focus on FC system design and manufacturing
(PEM, “high temperature” PEM, and solid oxide) and 5 patents.
applications (stationary, stationary with combined heat and power, |+ ECD April 2012
backup power, auxiliary power units and materials handling).
2 | Jun-12 ¢ Regular meetings established with Ballard and other ON TRACK
industry advisors  Ballard sub-contract in place
» Other partners (Nuvera, UTC, Altergy) to be
engaged on regular basis
3 |Jun-12 |+ Develop technical and performance specifications for 3 fuel cell |ON TRACK
types (LTPEM, HTPEM, SOFC) and 5 applications (stationary, [ Initial focus on CHP and back-up power
CHP, backup, auxiliary power and material handling) applications, followed by APU and forklifts.
* Literature review and industry advisor inputs.
4 [Sep-12} Initial set of parametric relationships of system designs and ON TRACK
component costs for the applications defined in Task 1for 2015 | Synthesis of existing cost studies in-progress
and 2020, and initial set of parametric relationships of system » Identifying key functional system design
designs and component costs as a function of key performance specifications for system types identified,;
and design variables for both fuel-cell-based systems and leading p Initial compilation of cost information for
technology incumbents. development of parametric relationships of
component costs with variations in key
design/performance metrics.
5 |Sep-12 Detailed low-temperature PEMFC design plans and technology | ON TRACK
BOMs for the project target markets identified in Task 1
* Design plans include cell stack, fuel processing, and balance-of- | System designs April/May
plant while BOMs will include materials and component BOM materials/components June/July
requirements and cost estimates from suppliers/OEMs Material/Component Cost Estimates June-Aug

Fd




Technical Accomplishments -

Literature Review - Cost Studies

AMR DTI (2010) AMR TIAX (2010) AMR Battelle (2010)

Automotive PEMFC : Small-scale stationary
Scope manufacturing costs at Automotlve_ FEAVIFE PEMFC manufacturing
: . manufacturing costs
various production rates costs
Svstem Cost 51 $/kW 49 — 65 $/kW 1300 $/kW
y (@500,000 units/yr) (@500,000 units/yr) (@2000 units/yr)
» Catalyst Ink & * MEA followed by BPP ' mE p followed by BPP
Application cost dominates stack costs dominates stack costs
dominates at high « Switching from Carbon 1
* R terial is the k
volume; Membrane to Metal+Coating BPP cssv’:l(;rr]i?/:rn(aeslgecieallfy
Key Learnings cost dominates at low greatly increased costs for the MEA and BPP)
volume « Top three cost drivers: . BOP accounts for over
 Top three cost drivers: catalyst loading o
. ’ f th
power density, GDL. SorE TG AT 50% of the system cost
and catalyst loading catalyst costs

» Vertical integration and direct manufacturing (some facility capital covered in Tiax
and Battelle)

 Various process steps for each component excluded from analysis
* Manual labor at low-volume, automated mfg at high-volume (DTI)

Key Assumptions
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Technical Accomplishments -

Literature Review - Cost Studies

* In addition to existing cost methodologies:
» Holistic life-cycle approach for TCO
* Incorporate more parametric relationships

« Build mathematical and semi-empirical models that relate design to
performance

Strategy/Plan

Include more parametric cost relationships with volume and country of

Materials S
More comprehensive process modeling (include more process steps such
as cleaning operations)

Process

* Energy balance: electricity, heat, etc.
 Mass balance: water, consumables, waste, etc.

Include more facility (and indirect manufacturing) costs
Facility « HVAC, lighting, etc.
+ Subsystems (e.g. compressed air, water/thermal management, etc.)

Externalities Pollution, environment, etc.
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Technical Accomplishments -

Literature Review - General/Market Studies <] ‘u’h

* General / Market studies: DOE market reports, Battelle 2007, Oak Ridge 2011
+ Key scope: Stationary and materials handling markets

« Cost, reliability, utilization are key drivers.
Progress ratio data with doubling of output reducing costs 20-30% (ORNL)

« Forklift / material handling systems, BU power key market opportunities
Forklifts : Cost sensitivity vs hours of operation, hydrogen cost, fuel cell replacement costs
— BU Power: Telecom towers, emergency response towers, data centers, ...
*  MicroCHP opportunity: large expensive homes in cold climates; CHP-commercial
may be another opportunity but examples all larger than 250kW

Cost Assumptions for NPV Analysis of PEM Fuel Cell- and Batterv-Powered Forklifts.
P Scemario 2 Comparison of 2008 ORNL Study and 2010
Fuel Cell Cost Estimates
Battery-Powered PE'\_[ _F"“'l fir Battery-Powered PE.\_I S 460,000
Pallet Truck Powered Pallet Sit-Down Truck Powered Sit- . M s
Truck Down Truck Costs reducad by '% or more I shady
Cost (5) 8,000 13.500 25,000 35,000 550,000 | 20052010 . A
Lifetime (v15) 15 15 15 15 8 /N
Hour's of Operation (hrs/yr) 7.644" 7644 5.460° 5.460° = 10000 - 2008 model generallyl
Cost of Accessories ($) 2,406° 2,406 - ] j undesestimated cost
Battery Charger 1,800 1,800 o reduchions
2 B $30,000
Cranes/Hoists 210 210 o o
Cost for Battery Room 396 396 % 0w .
Rolrilme Maintenance Costs 3 600° 720° 3 600° 720° E 520,000 2o |-
($/v1) E now g « 2005 Average
tricity . ]
](z]“(u:;“'\ ]I-[; drogen Fuel 1.307° 4,380 1.307° 5.612% 10000 | g lod ot } " A— W 2010 Predictad
osts ($/vr L
Time for Refueling (min/day) | 30 3 15 3 o \$/ 4 A 2010 Average
Cost of Refueling/Recharging 8.213° 37410 7 92511 39012 PEM Stack. 1w Sk ET0S SR
S/vT = - =7 For Ba Back Backup  Mataisls P
(S/yr) 5 “m::" et pow Handing Mirthane:
24,000 — Fuel cell Prions Sydem tysom s Ftrsoming
9.000 — Fuel cell module every 5
- S 1.800 — Batteries | =~ ‘“1_'1 == 4.000 — Batteries | years 2005 and 2010 averages hased on estimates supplied by OE M. 2010 p d ol 2,175 i per yeay fokal for
R every 5 years ‘\1:1‘1 e every 5 years 2600 — allmasked segments. Fredicliom assamed a pogress mtia of L9 and scee elasticlyof 112
Deins Ultracapacitors . . .
| evems 10 vears Figure 4. Comparison of 2008 ORNL Study and 2010 FC Cost Estimates.

Battelle 2007 ORNL 2011
eessssssssssssssm L AWRENCE BERKELEY NATIONAL L ABORATORY
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Technical Accomplishments /\l .
CHP Functional Requirements Scoping e

» Provide functional requirements (electrical and thermal load profiles) and
more realistic operational parameters for CHP applications (capacity,
cycling, etc).

« LBNL DER-CAM Model (Distributed Energy Resources Customer
Adoption Model)

« CEUS database of Commercial building electrical and thermal demand
profiles in California

* 90% of total commercial floor space is in buildings with a peak
load < TMW.

Peak Load of Building Number of Types Total number in SDG&E %
100 - 250 kW 4 620 35%
250 - 500 kW 3 574 32%

above 500 kW (***) 9 589 33%
Total 1783

» Operational parameters can be an input to total cost of ownership model
and can vary as function of building type and climate zone.

16
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“Smaller” LARGE OFFICE BUILDING ,,;,\j

Frreerr |m

(N = 331 in SDG&E, HT PEM CHP 250kW, 2020)

Summer Winter

lllll Conmampiion, huby weel - FOILY SO0 SsaDesge inland SLOAF (-S000W) REUIANTY acirk Comarmptaan, lemaary ek - FOO SD0T Lealinpe islard SLOWP |
SOORWY_RESULTY

Electricity .
Load -

11 3 il 11 13 1 16 17 ¥ 131 133 i 3 3 8 I 1z 13 1 17 i 111 13

e v

J— + — — v i f: —i

-l o ks 1 - — ¥ i wn jph 1 -

i [ . e - e

-_— - -_— rice =

s | - | e | - |

il - il - =

i Conpsmriigm, fely ek - LN SOOI LanDings_inland AL0FF [-S500W]_REARL

Thermal "
Load 5

1 2 3 4 5 & 7 B 9 100117 03 1«

ks 1T 18 19 20 I1 22 23 4

1%
-
-t ol e e (R
—_
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Collaborations N

 Partners
University of California Berkeley
Laboratory for Manufacturing and Sustainability, Department of Mechanical Engineering:
— Manufacturing process analysis, DFMA analysis

University of California Berkeley

Transportation Sustainability Research Center and DOE Pacific Region Clean Energy
Application Center:

— System Design/BOP, BOM definition, parametric relationships
— CHP applications and functional requirements

Ballard Power Systems:
Consultation on fuel cell system design and manufacturing processes

« Other collaborators
— Altergy: Consultation on backup power system
— Nuvera: Consultation on forklift fuel cell systems
— UTC: Consultation on back up power/primary power fuel cell systems

eessssssssssssssm L AWRENCE BERKELEY NATIONAL L ABORATORY
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Future Work T

FY12 Specific plans / risk mitigation:
* Development of system designs / BOP and BOM for LTPEM
« Patent and literature review
* Industry advisors
« Evaluation of strengths/weaknesses of existing cost studies
» Identification of knowledge gaps and targeted efforts to address them

FY13 Specific plans / risk mitigation:

« All BOMs and manufacturing flows completed; manufacturing and operation
cost model developed

« CHP, BU Power applications and LTPEM, HTPEM, SOFC systems

» Develop manufacturing process flows and costing including mass and
energy flows

» Develop parametric relationships as function of manufacturing volume,
system design and system performance

« DFMA analysis

LAWRENCE BERKELEY NATIONAL L ABORATORY I
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Project Summary eeee ;

Relevance: Provide more comprehensive cost analysis for stationary and
materials handling fuel cell systems in emerging markets including
ancillary financial benefits.

Approach: Design for manufacturing and assembly (DFMA) analysis cost
model including mass flow and energy balance for integrated lifecycle
cost analysis (LCA) impacts.

Technical Accomplishments and Progress: Literature review of key cost
studies and initial patent review completed; functional requirements
characterized for key applications.

Collaboration: Working partnerships with UC Berkeley manufacturing
analysis group, transportation sustainability research group, and Ballard
Power Systems. Will collaborate with other fuel-cell companies including
Altergy, Nuvera, UTC Power.

Proposed Next-Year Research: System designs/balance-of-plant (BOP) and
material/component bill of materials (BOM) and costing.

Tom McKone Max Wei
510-486-6163 510-486-5220
TEMcKone@lbl.gov mwei@lbl.gov
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Backup technical slides (5)
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Spatial and Temporal Technology Deploymenfc—‘“\| .

Freeeer ||||

Assessment

Advanced LCA models

Technology Life Cycle System

! Key new analytical bridges to
e - Ll i complementary systems
models

Assessment of policy,
technological, societal, and
economic changes over time

Critical for sound modeling

Net Technology Life-
of technology impacts

Cycle Inputs and Outputs
at Various Spatial and
Temporal Scales
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Example: Hidden Costs ;

BERKELEY LAB

Monetized Health Damage from Fossil-fuel Electric Power Generators

Damages ($ milions)
| | 00-025 e
B ozs05 [ 50
] os-1 I o=
| ER

PGCI_ﬁL- 300-425

Ocean

Source: NRC (2010)
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Analytica and user tool rerer] f

* Free Analytica Player allows public users to view and run existing
models, including making changes to input variables

* Intuitive, “influence diagram” interface, decision-centric modeling with
built in uncertainty, risk analysis and Monte Carlo simulation.

Model Details

(@) Energy+Environmental Economics PLS Cost-Effectiveness
\ Framework
T N LT T TS — .
— F Avoided Cos i i
Choice Single Example or Range (Matri) of Sheits| Matrl + it Your dCon8 :\e-rindhLm— ;
PV of Avoded Cost Benefts (P §) (SRS ~ . e
Example choice i?
Customer Avg On Peask Reduction (V) [LIEMEN] =~ Sa '
Matric Full Year? All Yo g ) H
Custorner M Reducton (L] el i = i
[rvmpons - i 1
!!!!! ology Lietrme weas) 18] v (acvyr) (G ~ E . =T .“""‘mﬁ
Double-click 2 module to explore mode! details " T H . —
Exp Descount rate AN aebered (SAh) M - ; = |
Carnate Zone 12 vI $AW by Avoided Cost Com iP‘Jsﬂw;-— I
Resource Balsnce Year 2018 w FIM Test Max incontrve g (G 1) ~ 7 ' '
Bham Gtart Options (Hour Ending)
Customer Tarit Before Sht PAC Test Max Incentive (i ([ Cale ) ~ Duration CpEens (Haurs)
L -3 4 €
Custorer Tarft ARer Shi QI Customer Resutts |
Program Adrin Cost '] B Swings AW (v o) (G ~
orrnakz aton Factc [(Maxl »]  Energy Charge Savngs S (PY $AW) -
|
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Single Bldg Investment Analysis with DER-CAIVI?\| )
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Electricity Balance Result

Diurnal electricity pattern for healthcare facility in San Diego for June
400 5
4 X
300 £
35 &
]
250 3 B
[=]
2 200 25 ¢
Qo
150 2 £
1535
100 =
1 2
50 0.5 °
0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
hour
B FC-HX-small-20-wSGIP B [CE-HX-small-20
mm Utility electricity consumption Electricity generation from photovoltaics
mm Electricity provided by the battery at each hour —e—Electricity input to battery

* 100 kW fuel cell with heat to power ratio of 1 runs 24 hours

* 60 kW ICE and utility purchase follow load

* PV during day hours, and

» electric storage charged during morning hours and discharged in

FC...fuel cell
ICE...internal combustion engine
HX...heat exchanger

the afternoon
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Heat Balance Result e f

Diurnal heat pattern for healthcare facility in San Diego for June
250
200
150
2
-
100 -
50 -
0 _
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
hour
B Heat collected from all CHP units (FC + ICE) B Heat collected from NG (All numbers in kW)

e almost all heat is provided by CHP systems
* CHP systems seem heat driven and the amount of heat needed at the building limits the
FC and ICE adoption
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