

High Aspect Ratio Nano-Structured Pt-based PEM Fuel Cell Catalysts

DOE Hydrogen and Fuel Cells Program Review 2012

Brian A. Larsen

National Renewable Energy Laboratory

May 15th, 2012

Project ID: FC100

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

Timeline

- Start December 2011
- Finish December 2013
- 20% complete

Barriers

- Cost (Catalyst/MEA)
- Performance (Catalyst/MEA)

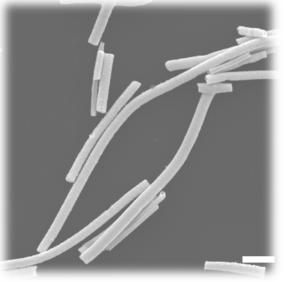
Budget

- Total project funding: \$113,200
- DOE FY11 Funding: \$113,200

Relevance

Objective

 Produce novel high aspect ratio nano-structured Pt-based catalyst materials with increased activity and increased Pt utilization, moving towards meeting all 2015 DOE catalyst targets

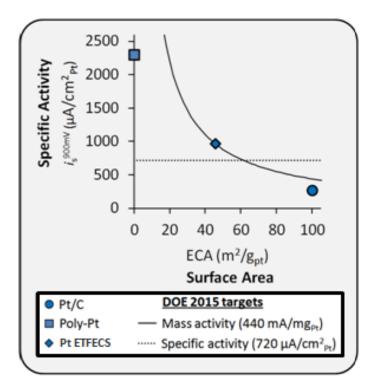

Table 3.4.12 Technical Targets: Electrocatalysts for Transportation Applications					
Characteristic	Units	2005 Status ^a		Stack Targets	
		Cell	Stack	2010	2015
Platinum group metal total content (both electrodes)	g / kW (rated)	0.6	1.1	0.3	0.2
Platinum group metal (pgm) total loading ^b	mg PGM / cm ² electrode area	0.45	0.8	0.3	0.2
Cost	\$ / kW	9	55 °	5 ^d	3 ^d
Durability with cycling Operating temp <80°C Operating temp >80°C	hours	>2,000 N/A ^g	~2,000 ^e N/A ^g	5,000 ^f 2,000	5,000 ^f 5,000 ^f
Electrochemical area loss h	%	90	90	<40	<40
Electrocatalyst support loss ^h	mV after 100 hours @ 1.2V	>30 ⁱ	N/A	<30	<30
Mass activity ^j	A / mg Pt @ 900 mV _{iR-free}	0.28	0.11	0.44	0.44
Specific activity ^j	μ A / cm ² @ 900 mV _{iR-free}	550	180	720	720
Non-Pt catalyst activity per volume of supported catalyst	A / cm ³ @ 800 mV _{IR-free}	8	N/A	>130	300

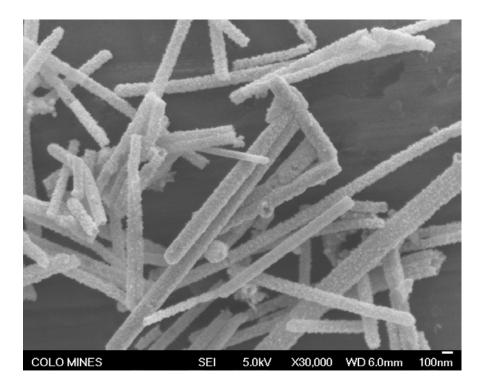
Approach

Synthesis of <u>Extended Thin-Film</u> <u>Electrocatalyst Structures:</u> ETFECS

- Galvanic displacement of controlled shape nanomaterials
- Control of galvanic displacement reactions can allow tuning of catalyst morphology

Pt nanotubes synthesized by galvanic displacement

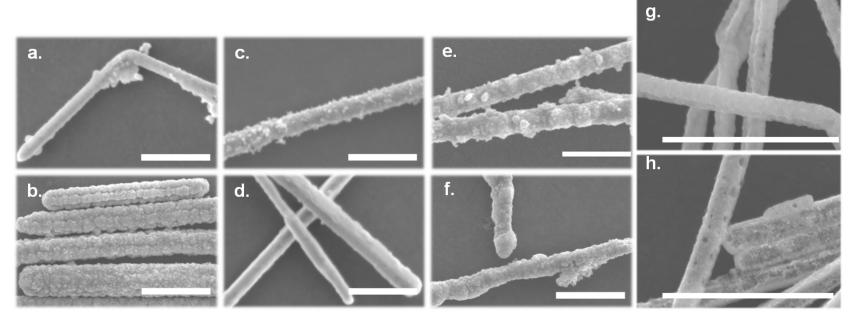

Galvanic displacement process Ag nanoplates Addition of Pt salt Pt²⁺in solution Galvanic displacement Ag⁺in solution Pt nanoplates


*Scale bars are 1 micron

Accomplishments and Progress

Synthesis of Pt nanotube

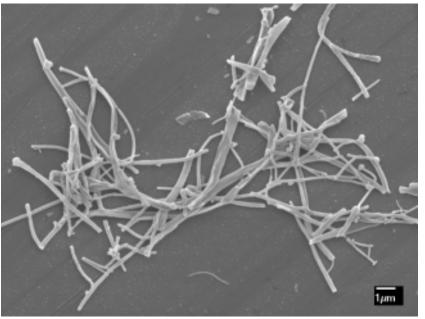
- Ag used as template materials
- High specific activity for both materials (>1000 μA/cm²_{Pt})
- Pt nanotubes achieved 450 mA/mg Pt in RDE half-cell testing
- Synthesized in gram scale quantities



Accomplishments and Progress

Development of methods to tune ETFECS surface area

- Surface ligand effects
- Control of surface deposition
- >45 m2 per gram achieved



The surface morphology of materials synthesized by galvanic displacement may be controlled by several parameters, such as utilizing surface ligands with different binding affinities (alkanoic acids [a, b], alkylamines [c, d], and alkanethiols [e, f]) or disrupting conformal deposition on the template surface (g and h).

Proposed future work

Exploration of new Pt-alloy ETFECS materials, including Cu, Ni, and Co

Initial synthesis results of PtCu ETFECS materials

 Pt_4Cu_6

Relevance:

Meeting all platinum-based electrocatalysts 2015 DOE technical targets for transportation applications.

Approach:

Synthesize ETFECS (Extended Thin Film ElectroCatalyst Structures) using galvanic displacement reactions.

Technical Accomplishments and Progress:

Synthesized gram-scale quantities of Pt ETFECS that have exceeded DOE 2015 mass activity target in RDE half-cell testing (450 mA/mg_{Pt}).

Proposed Future Research:

Explore new Pt-alloy ETFECS materials.

This work was generously supported by the Hydrogen and Fuel Cells Technologies program through the DOE-EERE Postdoctoral Research Awards.

The author gratefully acknowledges the research mentorship of Dr. Bryan S. Pivovar, the in-kind laboratory support of the National Renewable Energy Laboratory, and the contributions of many colleagues: Drs. KC Neyerlin, Svitlana Pylypenko, Shyam Kocha, Jeffrey Blackburn, and Justin Bult.