New High Performance Water Vapor Membranes To Improve Fuel Cell Balance of Plant Efficiency and Lower Costs

Earl H. Wagener (PI) Brad P. Morgan, Jeffrey R. DiMaio

Tetramer Technologies May 15, 2012

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project ID # FC102

Overview

Timeline

- Start: June 17, 2011
- End: March 16, 2012
- Phase I Effort Complete: 100%

Budget

- Total project funding
 - DOE share: \$150,000
 - Contractor share: \$0
- Phase I Funding FY11: \$150K

Barriers

- Cost
- Durability
- Performance stack water management

Partners

- General Motors (Automotive Prototype Membrane Performance Testing)
- Ballard (Non-automotive Prototype Membrane Performance Testing)
- Membrane Technology Research (Module Prototype Production)

Relevance

Design and develop high performance, low cost water vapor membranes for cathode humidification

DOE Barriers	2017 DOE Technical Targets for Cathode Humidifier Membrane	Tetramer 2012-2013 Goals
Cost	<\$10/m ²	~ \$20/m ²
Durability	5000 hours with < 10% drop in performance	20,000 cycles in GM durability test at 90 °C with a leak rate <150 GPU.
Performance – stack water management	 Operate at >95 °C Pressure differential <75 kPa Water transfer flux =0.025 g min⁻¹ cm⁻² 	20,000 GPU with less than 20% loss projected over 2 years

Phase I Approach and Technical Objectives

Progress	Objective	Status
100%	Demonstrate water vapor transport membrane with >18,000 GPU	GM has measured membranes demonstrating 18,319 GPU
80%	Water vapor membrane with less the 20% loss in performance after GM stress test	Demonstrated 11% decrease in permeability after 500 hours of continuous operation
90%	Crossover leak rate: <150 GPU	Membranes have demonstrated <50 GPU in short term tests
80%	Temperature Durability of 90 °C to excursions to 100 °C	Test were run at 85 °C and membranes achieved 20,000 cycles
50%	Cost - <\$10/m ² at medium volumes	Variable costs depending on polymer structure. Phase I membranes estimated at \$20/m ²

Approach: Technical Tasks

% Completion	Tasks	Status
95%	Ionomer Membrane Performance Optimization through Improvements in Molecular Architecture	Tetramer has produced over 20 new polymer structures that exceed competition
40%	Durability Improvement	Demonstrated 21% decrease in permeability after 1,800 hours of continuous operation
100%	Scale up of High Performance Materials	Multiple samples have been scaled up for testing

Previous Accomplishments -Improved PEM Performance vs. Nafion[®] 1000

 Membrane conductivity as a function of relative humidity (RH) for proprietary Generation 1 TT PEM ionomer and Nafion[®] 1000.

• Fuel cell polarization curve at 150 % RH_{out} for proprietary TT ionomer membrane and Nafion[®] 1000.

Phase I Technical Accomplishments -

Results of Different Molecular Architectures During Phase I

- Significant improvements have been made during Phase I to improve gas permeation of water through Tetramer's proprietary membranes.
 - New molecular architectures were vital towards success.

Phase I Technical Accomplishments -Generation 1 Water Vapor Membranes

 Generation 1 WVT membranes showed high water vapor gas permeation. These materials exceeded current commercial materials.

Phase I Technical Accomplishments -Durability of Current Water Vapor Membranes

- Current rate of degradation is currently below the target 2%/500hr target (shown as a red line).
- Tetramer has identified 7 different methods to reduce the rate of degradation.

Collaborations

Partners

- General Motors (Industry) Automotive Prototype Membrane Performance Testing
- Ballard (Industry) Non-automotive Prototype Membrane Performance Testing
- Membrane Technology Research (Industry) Module Prototype Production

Phase I Summary

- Relevance Develop water vapor membranes to enable improved cathode humidification modules.
- Approach Develop advanced molecular architectures to increase water vapor transport and durability while decreasing cost.
- Technical Accomplishments Demonstrated improved water vapor transport and durability. Improved processing yields to lower overall cost.
- **Collaborations** Partners in place to build and evaluate prototype modules with down selected materials.
- Future Work Using structures developed in Phase I, fabricate membranes and optimize tradeoff in performance and durability. Scale up to provide partners with membranes for prototype testing.

Contact Information

Earl Wagener, CEO earl.wagener@tetramertechologies.com 864.650.0430

Jeffrey DiMaio, Technology Manager dimaio@tetramertechnologies.com 864.903.9009

Brad Morgan, Senior Research Scientist brad.morgan@tetramertechnooiges.com 864.506.1263

