Highly Efficient, 5kW CHP Fuel Cells Demonstrating Durability and Economic Value in Residential and Light Commercial Applications

> Donald F. Rohr May 16, 2012 H2RA003

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Today's Fuel Cells for proven, reliable power.

AP

OVERVIEW

Timeline

- Project start October 2009
- Project end September 2013
- 85% complete

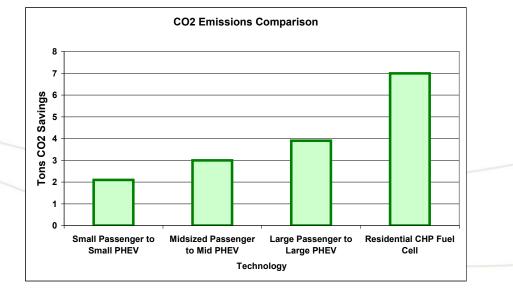
Barriers

- Barriers addressed:
 - A. Durability
 - B. Cost
 - C. Performance

Budget

- Total project funding \$6.7M
 - DOE \$3.35M
 - Plug Power \$3.35M
- Funding in FY09 \$1.3M
- Funding in FY10 \$1.2M
- Funding in FY11 \$0.4M
- Planned in FY12 \$0.4M

Partners


- Interactions/collaborations
 - University of California Irvine
 - Southern California Gas
- Project Leads
 - Dr. Jack Brouwer
 - Randy Brown

Relevance

- Program: Highly Efficient, 5-kW CHP Fuel Cells Demonstrating Durability and Economic Value in Residential and Light Commercial Applications
- Purpose:
 - Substantiate durability through reliability fleet operation
 - Verify the technology and commercial readiness
 - Develop engineering models and train graduate students
 - Create new products, jobs and market

Partners:

- University of California Irvine (\$50,836 cost share)
- Southern California Gas (\$180,000 cost share)

CHP FUEL CELL DURABILITY DEMONSTRATION - Approach

- Task 1: Internal Durability/ Reliability Fleet Testing
 - Task 1.1: System Design
 - Task 1.2: System Modeling
 - Task 1.3: Site Identification and Selection
 - Task 1.4: Procure Parts and Build Systems
 - Task 1.5: Long Term Tests
 1st GO/NO GO Decision
 - Task 2: External Customer Demonstration and Testing
 - Task 2.1: Communication, Education and Outreach
 - Task 2.2: Site Preparation, Natural Gas and Grid Interconnection
 - Task 2.3: Build and Installation
 - Task 2.4: Demonstration Testing and Maintenance
 2nd GO/NO GO Decision

UCI operational MEA Supply issues Stop home installs

- Task 2.5: Decommissioning
- Task 3: Project Management
 - Task 3.1: Cost Analysis

TASK 1.1: SYSTEM DESIGN - COMPLETE

Product Characteristics	
Minimum Continuous Output	0.5 kW
Maximum Continuous Output	2.5 kW to 5.0 kW
Operating Fuel	Natural Gas
Dimensions	101cm x 71cm x 122cm
Weight	250kG
Nominal Voltage	120Vac 60Hz or 230Vac 50Hz
Efficiency (Electric/CHP)	30% / 85% LHV
Integrated Burner	Variable Output (7kW / 25kW)
Operating Conditions	
Location	Indoors
Ambient Temperature Range	0°C - 40°C

Plug Power design initiatives:

Controls and efficiency improvements

- Start-up, thermal response and heat modulation improvements, improved thermal recovery
 From 89% peak total efficiency to 94%
 Manufacturability improvements
 - Enclosure, piping, insulation and wiring
 - Reduced build time from > 120 hours to < 50

Design for certification

- Integrated with commercial automatic burner control system
- Reduced exhaust temperature

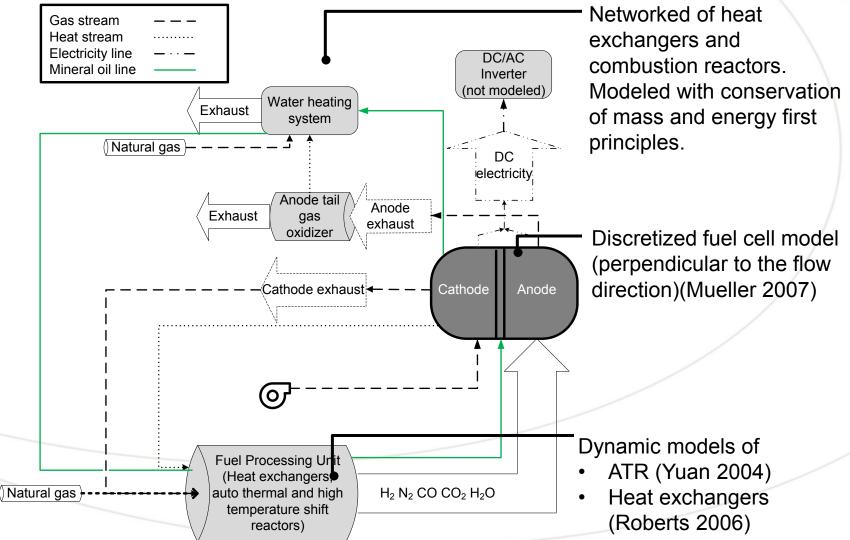
Reduction in material cost

- From ~\$90k to \$53k in volumes < 20

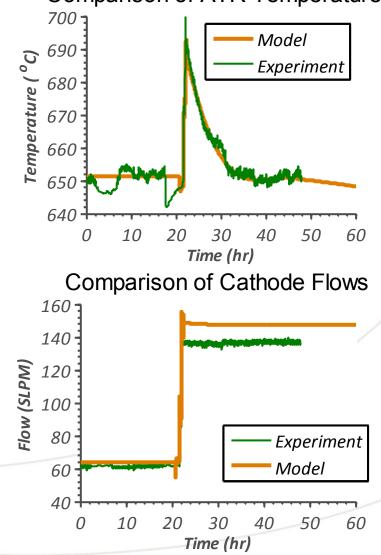
The low cost, reliable, simple to install design with a compelling value proposition yields an energy efficient green product that delivers value to the customer.

TASK 1.2: SYSTEM MODELING

- Objective: Using Matlab-Simulink, develop a dynamic model and simulation of the GenSys Blue fuel cell system, correlate with data from the reliability fleet and use the model to further understand and improve the design.
- **Approach:** Develop independent models of the stack, fuel processor and burner then integrate these into a system model; demonstrating initially steady-state capability and then dynamic.
- **Status:** Sub-system models, system integration and steady-state capability complete. Dynamic development ongoing.


UCI is leading the system modeling effort. The team is correlating data generated by the model with data from the reliability fleet.

National Fuel Cell Research Center


Model structure & theory

Recent model results

- Power transient 1.5 kW 3 kW
- ATR temperature rose 50°C within 30 minutes, decreased gradually to the normal operating temperature
- Model comparison to experimental data allowed:
 - Improvement on controller model
 - Understanding of flow meter uncertainties
 - To get the experimental ATR temperature profile, 10% of air needs to be added at the high power set point.

Comparison of ATR Temperatures

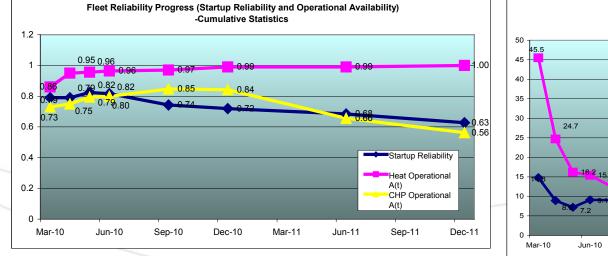
UNIVERSITY of CALIFORNIA • IRVINE

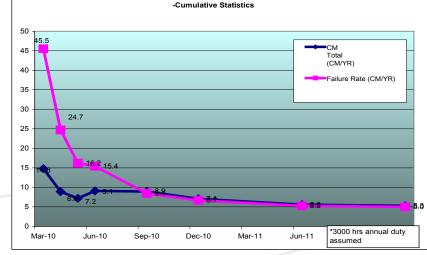
TASK 1.3: SITE IDENTIFICATION AND SELECTION

- UCI Installation Completed
 - Systems installation completed
 - CHP rig interfaced with each system
 - Heat rejection loop installed
 - Started up and running 2 systems in CHP and 1 system in heat only

Installation startedFebruary 20112 Stacks deliveredJune 2011Systems startedJuly 2011Running periodJuly- present

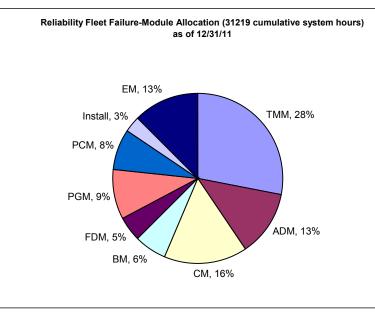
UCI came online at the same time we were seeing MEA issues




TASK 1.5: LONG TERM TESTING

Internal fleet dashboard metrics:

- 6 systems commissioned in Plug Power labs
- Over 31,000 run hours
- 53 MWhrs of electricity and 633 MWhrs of heat produced
- Unadjusted heat availability of 99%
- Unadjusted CHP availability of 56%

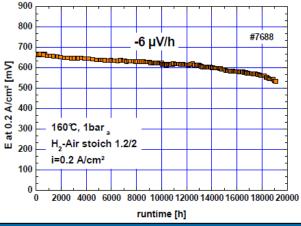


Fleet Reliability Progress (Failure and Service Call)

TASK 1.5: LONG TERM TESTING

	HT GenSys Reliability Fleet Stats Through											
12/31/2011 0:00												
System S/N	Commissioned Date	System Runtime (Hours)	Current Stack Runtime	Burner Runtime	Electrical kWh	Thermal kWh	Startup Reliability	Heat Operational A(t)	CHP Operational A(t)			
EpsilonPlus8	1/8/2010 14:50	7823	6058	11443	15247	117862	0.60	1.00	0.72			
EpsilonPlus9	1/11/2010 15:14	4381	3802	9910	7349	101859	0.70	1.00	0.39			
EpsilonPlus10	4/9/2010 8:55	1777	1777	8344	2520	95252	0.71	0.99	0.56			
Foxtrot2	1/8/2010 14:59	8977	1651	7958	15109	112070	0.64	1.00	0.70			
Foxtrot3	3/2/2010 10:47	5011	3098	11191	6679	122348	0.56	1.00	0.54			
Foxtrot4	6/11/2010 14:45	3249	3249	8264	6002	83607	0.55	0.99	0.47			
Totals	-	31219	19635	57109	52905	632998	-		-			
Average	-	5203	3273	9518	8818	105500	0.63	1.00	0.56			

Module AcronymsTMMThermal ManagmentADMAir DeliveryCMControlsBMBurnerFDMFuel DeliveryPGMPower GenerationPCMPower ControlsInstallInstallationFMElectronics		
ADMAir DeliveryCMControlsBMBurnerFDMFuel DeliveryPGMPower GenerationPCMPower ControlsInstallInstallation		Module Acronyms
CMControlsBMBurnerFDMFuel DeliveryPGMPower GenerationPCMPower ControlsInstallInstallation	TMM	Thermal Managment
BMBurnerFDMFuel DeliveryPGMPower GenerationPCMPower ControlsInstallInstallation	ADM	Air Delivery
FDMFuel DeliveryPGMPower GenerationPCMPower ControlsInstallInstallation	CM	Controls
PGMPower GenerationPCMPower ControlsInstallInstallation	BM	Burner
PCMPower ControlsInstallInstallation	FDM	Fuel Delivery
Install Installation	PGM	Power Generation
	PCM	Power Controls
EM Electronics	Install	Installation
	EM	Electronics


TASK 1.5: LONG TERM TESTING

- Current stack life in system is:
 - 3000-5000 h (6-12 months)

Be	fore April 20	010	After April 2010	
	Hrs		Hrs	
Epsilon 8	1045		4073	→ > 60
Epsilon 9	580		3801	
Epsilon 10	1778			
Foxtrot 2	2068		4742	
Foxtrot 3	1913		3098	
Foxtrot 4	#N/A		3206	
Avg	1476.8		3784	

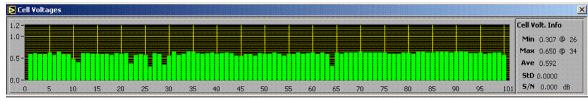
• BASF Laboratory Data:

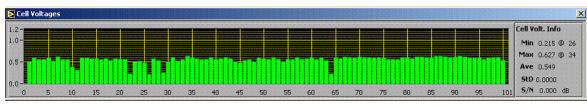
- Current stack life on test station is:
 - >5400h (12+ months) and running
 - Projected 10,000h (18-24 months) at current rate

Last Year We Saw Encouraging Results: Stack Lifetimes Were Approaching Commercial Launch Requirements

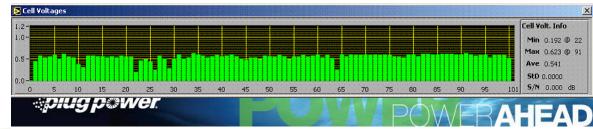
MEA Supply & Stack Began to Show Inconsistent Performance

- Individual testing of MEA's showed reduction in holes and early failures
- Edge leaks also diminished
- Previously, we would see failures in ~ %10-%20 of tested MEA's
- Recently saw improvement to 1%-2% failure rate.


11504104.bmp	15504001.bmp	15504002.bmp	15504003.bmp	15504005.bmp	15504006.bmp	15504007.bmp	15504008.bmp
T a a a a a a a a a a a a a a a a a a a	I T						
15504009.bmp	15504010.bmp	15504011.bmp	15504012.bmp	15504013.bmp	15504014.bmp	15504015.bmp	15504016.bmp
15504017.bmp	15504042.bmp	15504043.bmp	15504044.bmp	15504045.bmp	15504046.bmp	15504047.bmp	15504048.bmp
15504049.bmp	15504050.bmp	15504051.bmp	15504052.bmp	15504053.bmp	15504054.bmp	15504055.bmp	15504056.bmp
15504057.bmp	15504058.bmp	15504059.bmp	15504060.bmp	15504061.bmp	15504063.bmp	15504064.bmp	15504065.bmp
15504066.bmp	15504067.bmp	15504068.bmp	15504069.bmp	15504070.bmp	15504071.bmp	15504072.bmp	15504073.bmp
2000 1000.5mp	2000/00/10/10	2000 1000.0mp	1000 1009.0mp	1000 107 0.0 mp	1990-107 1.6mp	1990-10, 510 mp	2000-107 Sibility


Stack Cell Profile

- Cell profile indicates stack would have performance issues
- Even high stoich conditions did not help
- Several troubleshooting sessions
 - Catalyst issues
 - Over compression
 - Phos. acid blinding of catalyst
 - Prototype consistency
 - Raw material questions
 - Stack assembly concerns


1.91 Anode Stoichs 30A on Reformate

1.63 Anode Stoichs 35A on Reformate

1.58 Anode Stoichs 36A on Reformate

Stack tests indicated high variability in cell-to-cell performance

MEA Supply, Performance and Stack Risk

- Discussions held with BASF
- Recognized issues and lack of resources to solve
- BASF offered a standard format MEA design to substitute Plug Power's custom configuration
 - This would require prohibitive stack redesign
 - Plug Power did not want home customers to experience early stack failures
 - Plug Power decided risk was too great to move forward
- Plug Power decided to engage ClearEdge Power to provide home systems
- Agreement is being developed between Plug Power, ClearEdge Power and DOE.

Discussions with BASF are very collaborative, but no quick solutions were found and BASF and Plug Power are not resourced for this level of challenge

2.2: SITE PREPARATION, NATURAL GAS AND GRID INTERCONNECTION

Site	Site Survey	NEPA Form	Application Engineering	Permits	Interconnect Application	Installation	Interconnect Approval	Commissioning				
University of Calif	-			1011								
Installation 1	13-Sep	n/a	1Q11	1Q11	n/a	2Q11	n/a	2Q11	Į			
Installation 2	13-Sep	n/a	1Q11	1Q11	n/a	2Q11	n/a	2Q11	J			
Installation 3	13-Sep	n/a	1Q11	1Q11	n/a	2Q11	n/a	2Q11				
Sempra Energy Sites, California												
Woodbury												
Lagoon	14-Sep	n/a	2Q11	3Q11	2Q11	3Q11	3Q11	4Q11				
Anthony												
Residence	14-Sep	n/a	2Q11	3Q11	2Q11	3Q11	3Q11	4Q11				
Hentschel												
Residence	15-Sep	n/a	2Q11	3Q11	2Q11	3Q11	3Q11	4Q11	-			
Huie Residence	14-Feb	n/a	2Q11	2Q11	2Q11	3Q11	3Q11	4Q11				

Operate UCI as much as possible

Sites are on hold until we gain clarity around the ClearEdge discussions

Where We Are

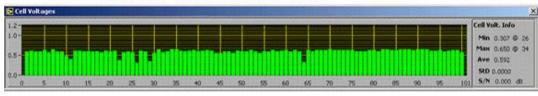
Fleet Performance

•Plug Power: 6 units running

- 5 in heat only mode
- 1 in CHP mode
- 2 full years of run time

•UC-Irvine: 1 unit running

 Down units waiting for component replacement


Primary Issue: Stack continuity of supply, quality issues

•Voltage suppression, cell to cell variability

BASF MEA supply stretched thin

6A Target Performance and Go/No-Go Decision Chart										
Characteristic	Units	Goal	1st GO - 2Q10	1st GO Actual	2nd GO - 2Q11					
Electrical efficiency at rated power	%	40	>30	32%	>30					
CHP efficiency at rated power	%	90	>80	90%	>80					
Cost (qnty < 15)	\$/kWe	10,000	20,000	10,400	20,000					
Durability at < 10% rated power degradation	hr	10,000	2,000	3,000	8,700					
Noise	dB(A)	<55 at 10m	<55 at 10m	55 at 1m	<55 at 10m					
Emissions (combined NOx, CO, SOx, hydrocarbon, particulates)	g/MWhr	< 1.5	< 1.5	< 1.5	< 1.5					
				GO	NO GO					

1.91 Anode Stoichs 30A on Reformate

Lack of continuity of supply for the stack component prevents further testing with electrical power output. Systems are currently being run in "heat only" mode.

Lessons Learned

- Stack reliability is key
- Stack manufacturing
 - Raw materials consistency & pre-qualification
 - Stack testing
- Stack re-work
 - Stack repair & maintenance
 - Cell jumper
 - Pt recycling for MEA's
- High temperature oil
 - Pushes material limits
 - Seals and gaskets
 - Avoid leaks into anode/cathode
- Still need low cost components
 - Pumps, blowers, boards
 - Air manifold
 - TMM valve
 - ADM valve
 - Enclosure
- Problem list is addressable given time and resources

Continued assertion that fuel cell CHP market is real

COLLABORATIONS

• University of California Irvine – National Fuel Cell Research Center

-University, cost sharing partner within the program

-NFCRC develops a system model for product development, refining controls and improving operation

Southern California Gas

Industry, non-cost sharing partner within the program
 Providing sites for testing and will assist in interconnection and fleet evaluation

California Air Quality Management District (AQMD)

-State agency, non-cost sharing partner outside of the program

-AQMD will evaluate fleet data against California air quality standards

National Renewable Energy Laboratory (NREL)

-National lab, non-cost sharing partner outside of the program

-NREL will assist in fleet data analysis


Future Work

Steps to Program Completion

6A CHP Reliability Testing Remaining Tasks								
Task	Reference	Completion Date						
Continue running 6 systems at Plug Power in	1.5	_						
heat only mode, including service and reporting	1.5	-						
Continue running 3 systems at UCI in heat only	2.4							
mode, including service and reporting	2.4	-						
Continue modeling with UCI	1.2	-						
Complete arrangement and purchase order with	2.4	1-Apr-12						
ClearEdge for 2 turn-key units with service and	2.4	1-Api-12						
Quarterly Report - Q1 2012	3.0	10-Apr-12						
Install ClearEdge units and begin 1 year of data	2.4	1-Jun-12						
Quarterly Report - Q2 2012	3.0	10-Jul-12						
Decommission 6 systems at Plug Power	2.5	1-Sep-12						
Decommission 3 systems at UCI	2.5	1-Sep-12						
Quarterly Report - Q3 2012	3.0	10-Oct-12						
Quarterly Report - Q4 2012	3.0	10-Jan-13						
Quarterly Report - Q1 2013	3.0	10-Apr-13						
Quarterly Report - Q2 2013	3.0	10-Jul-13						
Cost Analysis	3.1	12-Jun-13						
Program Management Conclusion	3.0	12-Jun-13						

- Further enabling the industry
 - 2 CHP units in real customer application in California

MILESTONES

	2	009		010	-		1000	2011	attin Tab		2013	
	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
ask 1 Internal Durability/ Reliability Fleet		Milestor	ne 1		N	lilestone	2				Milesto	ne 3
Testing		2022092092000 										
1.1 System Design												
1.2 System Modeling												
1.3 Site Identification & Selection												
1.4 Procure Parts & Build Systems		16 Week L	6 Unit	5								
1.5 Long-Term Tests		TO WEEK LI										
	-			Go/No	Go							
Task 2 External Customer Demonstration												
Testing												
2.1 Communication, Education, Outreach				-								
2.2 Site Preparation/ Grid Interconnections			12	-]							
2.3 Build and Installation					🗾 6 Unit:							
2.4 Demonstration Testing/ Maintenance					1							
2.5 Decommissioning									Go/No Go	2		
Program Management	8											

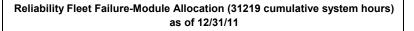
Accomplishments

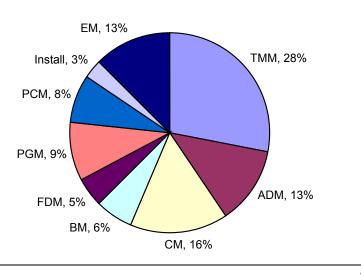
• Fleet of 6 systems located at Plug Power

Plug Power CHP System Performance Metrics (Through December 2011)											
System S/N	E8	E9	E10	F2	F3	F4	Totals	Average			
Commissioned Date	Jan-10	Jan-10	Apr-10	Jan-10	Mar-10	Jun-10					
System Runtime (Hours)	7,823	4,381	1,777	8,977	5,011	3,249	31,219	5,203			
Current Stack Runtime	6,058	3,802	1,777	1,651	3,098	3,249	19,635	3,273			
Burner Runtime	11,443	9,910	8,344	7,958	11,191	8,264	57,109	9,518			
Electrical kWh	15,247	7,349	2,520	15,109	6,679	6,002	52,905	8,818			
Thermal kWh	117,862	101,859	95,252	112,070	122,348	83,607	632,998	105,500			
Startup Reliability	60.0%	70.0%	71.4%	64.0%	56.3%	54.5%		62.7%			
Heat Operational	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%		100.0%			
CHP Operational	71.9%	39.2%	55.7%	70.4%	53.8%	46.9%		56.3%			

Plug Power Systems Lab

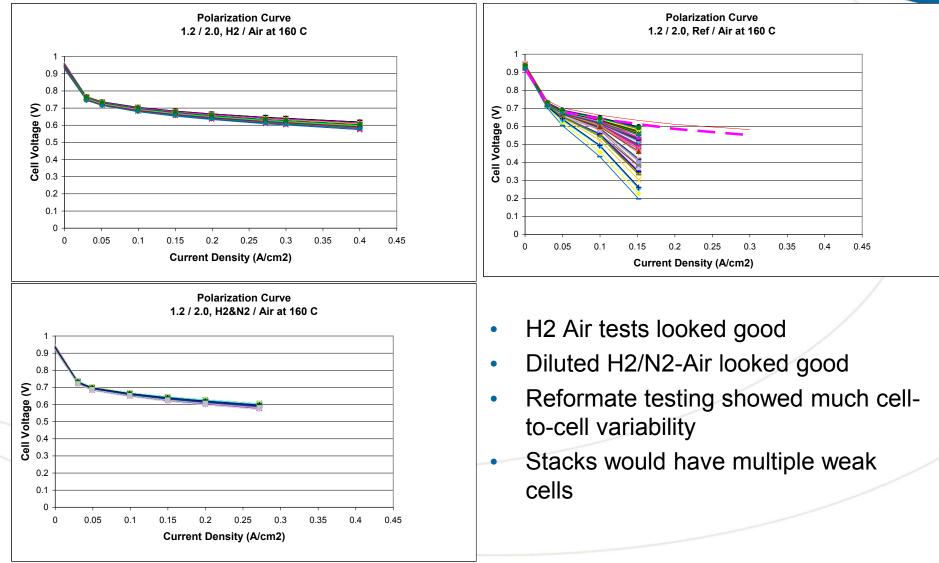
- Fleet of 3 systems located at UC-Irvine
- Design Improvements
 - Performance optimization through modeling
 - Efficiency: enhanced thermal recovery
 - Controls: start-up, thermal response
 - Efficiency: 89% total peak to 94%
 - Manuf: Build reduced from >120 to <50 hr
 - DMC Reduction: ~\$90k to \$53k in volumes < 20

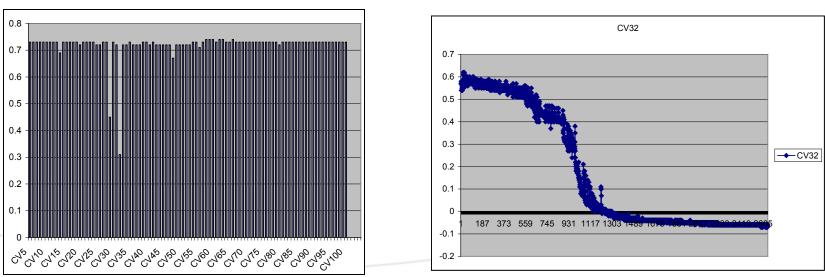




Top Problems

- PGM: Stack life less than 8000 hours
- PGM: Stack early mortality due to cell variability
- TMM: Oil pump failures due to seal loss, seizing, electronics failure
- TMM: Oil leaks due to stack gasket leaks
- TMM valve seizing and coupling failure
- ADM: manifold material warping
- ADM: valve seizing, controls
- BM: Igniter failure due to materials/ temperature
- CM: Sola failure due to voltage
- CM: valve position drift/loss
- FDM: Reformer temperature too high


	Module Acronyms	
TMM	Thermal Managment	
ADM	Air Delivery	١
СМ	Controls	
BM	Burner	
FDM	Fuel Delivery	
PGM	Power Generation	
PCM	Power Controls	
Install	Installation	
EM	Electronics	


Assembled Stack Tests Showed New Challenges

Early Stack Mortality

- Observed one stack that degraded significantly after 1 week of operation
- Cell looked weak, but then dropped off rapidly
- Cell went negative and had to shut down the stack

Stack Cell Profile

Cell Death Profile

2.1: COMMUNICATION, EDUCATION AND OUTREACH

Events to date:

- Ribbon cutting ceremony for *GenSys Blue* installation at Union College in NY
- Alumni Day at Union College
- New York State Science, Technology, Engineering and Mathematics (STEM) Educational Collaborative at Ballston Spa High School in Ballston Spa, NY
- United States Fuel Cell Seminar in Palm Springs, California. *GenSys Blue: Fuel Cell Heating Appliance*
- Ballston Spa High School technology field trip
- Plans for system on display at the Schenectady Museum
- UCI installs GenSys systems in California
- Co-taught Fuel Cell Seminar Course with UCI NFCRC

NYS Assemblyman Jim Tedisco with Union College faculty, Plug Power and National Grid employees at ribbon cutting ceremony (DOE 7C)