

Fuel Cell MEA Manufacturing R&D

Michael Ulsh

MN001

May 16, 2012

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

Timeline

Start: July 2007 End: TBD % complete: N/A

Budget

Funding received in FY11

 \$770,000 (includes \$100,000 to LBNL)

Planned funding in FY12

- \$575,000 (includes \$75K to LBNL)

Barriers

Barrier	Target
B: Cost - fuel cell	\$15/kW (2017) at 500,000 stacks/yr
F: Low levels of quality control - manufacturing	50x stack cost reduction

Funded Partners

Lawrence Berkeley National Laboratory Colorado School of Mines Hawaii Natural Energy Institute New Jersey Institute of Technology DJW Technology

	MYRD&DP Milestones		Project Objectives	
2011	Develop prototype sensors for quality control of MEA manufacturing	1	Evaluate and develop in-line diagnostics for <u>MEA component</u> quality control, and validate in-line	
2012	Develop continuous in-line measurement of MEA fabrication	2	Investigate the effects of manufacturing defects on MEA	
2013	Demonstrate sensors in pilot- scale applications for manufacturing MEAs		performance and durability <u>to</u> <u>understand the accuracy</u> <u>requirements for diagnostics</u>	
2013	Establish models to predict the effect of manufacturing variations on MEA performance	3	Integrate <u>LBNL modeling</u> to support diagnostic development and implementation	

Relevance

- Quality control needs for scale-up of cells and cell component manufacturing confirmed by industry at recent government activities
 - NREL/DOE H₂ & Fuel Cell Manufacturing R&D Workshop, August 2011
 - ONR/ACI/Montana Tech Manufacturing Fuel Cell Manhattan Project, 2010-2011
- Both activities also highlighted the need to better understand the effects of defects on performance and durability of low temperature systems
 - Defines sensitivity requirements for diagnostics
 - Leads toward better production tolerances and lower costs

Collaborations

- 3M, Arkema, Ballard Material Products, BASF, Delphi, GM, Johnson-Matthey, W.L. Gore & Associates: prioritization of diagnostic development, defect selection, sample fabrication
- NREL National Center for Photovoltaics/New Jersey Institute of Technology: diagnostics development
- LBNL: model development and integration
- Colorado School of Mines: diagnostic development, test method development and defect analysis
- Hawaii Natural Energy Institute: segmented cell development and defect analysis

Creative Technologies Worldwide

Rensselaer

Johnson Matthey Fuel Cells

BALLARD

BASF

The Chemical Company

BASF Fuel Cell, Inc.

Making Fuel Cells Better

ARKEMA

Approach

- Understand quality control needs from industry partners and forums
- Develop diagnostics
 - Use modeling to guide development
 - Use in-situ testing to understand the effects of defects
- Validate diagnostics in-line
- Transfer technology

Date	Milestone/Deliverable	Complete
9/11	Demonstrate optical diagnostic for membranes on web-line	100%
9/11	Go/No-go decision for further development of optical diagnostic for platinum measurement \rightarrow Conditional No-Go	100%
6/12	Demonstrate IR/DC diagnostic for CCMs & GDLs on web-line	100%
9/12	Compare model & experiment for IR/RFT and determine critical parameters	25%

Current NREL Diagnostics Overview

Material	Defect	Examples	Detection	Status
Membrane	Thickness variation, pinholes, bubbles, etc.	<u>100 µт</u>	Optical reflectometer	Demonstrated on web-line
GDL	Scratch, agglomerate, fibers	Micro-Cracking	IR/DC	Demonstrated on web-line
Electrode	Thickness/ loading, voids, agglomerates		CCM: IR/DC	Demonstrated on web-line
			GDE: IR/RFT	Demonstrated on bench-top
MEA	Shorting		Through- plane IR/DC	Demonstrated on bench-top with moving substrate

Scope modified according to industry input

Technical Accomplishments: Optical Diagnostic

Web-line demonstration

- Thickness imaging, discrete defect detection
- Equipment details
 - Linescan camera (12" field of view)
 - Fiber optic light source with cylindrical lens
 - Encoder for camera timing
 - High performance computer
 - NREL-developed software
- Demonstrated defect detection on PEM membrane at 30 foot per minute
 - Bubbles, scratches, divots
 - Defects ~10-100 μm

Membrane

Technical Accomplishments: Optical Diagnostic

Solid oxide cell defect detection

- Detection of electrolyte defects is critical
- Studied fired anode+electrolyte half-cells known to have defects on electrolyte surface
 - + 10 μm to 3 mm in dimension
 - Up to ~5 μ m depth
- Detected defects with standard equipment setup
 - Applicable to high-rate or in-line measurement

Web-line set-up

- Installed IR camera, bench-top roller, and excitation source on web-line
- Created defects manually
 - Square scratches from 0.04 2 cm²
 - Surface cuts from 5 20 mm long, of different orientation (0°, 45°, 90°)

Web-line demonstration: GDLs

- Used rolls of MPL coated GDL
 - Fabricated by Ballard Material Products
- Ran at 10 and 30 foot per minute
- Ran at speeds up to 100 foot per minute on bench-top roller
- Nominal detection criteria was ΔT of > 1°C
- Detected all defects
- Data processing enhances detection

BALLARD

Web-line demonstration: CCMs

- 2' x 6" one-side catalyst-coated membrane sheet
 - Fabricated by Ion Power
 - Spliced into PET carrier web
- Ran at 10, 30, and 60 foot per minute
- Ran at speeds up to 100 foot per minute on bench-top roller
- Nominal detection criteria was ΔT of > 1°C
- Detected all defects except surface cuts in the direction of motion (0°)
 - Improvements under development
 - Data processing enhances detection

Demonstration of through-plane measurement for MEA shorts

- Studied 50 cm² MEAs with optically invisible shorting defects
- Detected various defect types leading to shorting
 - Membrane pinholes
 - GDL fiber protrusion and other surface defects
 - Catalyst agglomerates
- Demonstrated technique on bench-top roller system at speeds of 30 foot per minute and higher
 - Technique promising for high-rate or inline measurement

Membrane hole

IR / Reactive Flow Through technique

- Operation
 - Gas diffusion electrodes (GDE)
 - Flow 0.4% $H_2/0.2\% O_2$ in N_2 through media
 - Measure heat signature with IR camera
- Experimental and numerical studies of pristine samples to understand thermal response
 - Effect of electrode loading
 - Effect of gas flow rate

Gas Flow Rate [sccm]

IR / Reactive Flow Through technique

- Experimental and numerical studies of defect samples to understand thermal response
 - Response time
 - Defect size (0.0625 2 cm²) and reduction in loading (25 100%)
- Predictive modeling to assess thermal response under other conditions of interest
 - Effect of higher H₂ concentrations & defect reduction in loading
 - Understand limitations of technique
 - Guidance for future experimentation and transition to moving substrates

GDE with 0.2 mg/cm² nominal loading and 1 cm² defect of 50% loading reduction

Technical Accomplishments: HNEI Segmented Cell

Segmented cell study of GDL defects

- Question: Is a process tolerance of ±2% of PTFE content sufficient?
- Study: Insert defect over 10% of total cell area
- Results:
 - Local variation in cell performance observed and characterized (indicates need for aging)
 - No difference in total cell performance for a 4% difference in PTFE content
 - Confirmed currently applied manufacturing tolerances
- Voltage [V] Implication: Segmented cell is a relevant tool for manufacturing studies

Technical Accomplishments: NREL Segmented Cell

Segmented cell study of electrode defects

- 121 segments over 50 cm²
- Studied CCMs with square defects fabricated in cathode
 - 0.0625 2 cm² bare spots
 - 0.2 mg/cm² nominal loading
- Demonstrated capability to detect sub-cm² electrode defects
- Result: Investigated defects have local performance effects
- Technique enables us to understand the required detection limits of our diagnostics
- Future work will study aging of very small defects to determine if failure points are initiated at the defect location

80°C, 100/50% RH, 1050/3500 sccm H₂/air, 150/150 kPa (an/ca)

Future Work

- Continue to refine the configuration and optimize the performance of diagnostics on web-line
- Determine if the IR/RFT diagnostic is feasible for in-line measurement of GDEs
- Prove feasibility of through-plane IR diagnostic on bench-top roller using industrially produced MEA sheets
- Continue to integrate modeling results to support diagnostic development
- Complete electrode defect study using the NREL segmented cell system
 - Identify defect size at which local performance effects are not observed
 - Perform aging studies to determine if failures develop at defect locations
- Assess industry needs and begin to evaluate other diagnostic techniques
- Complete specific partner studies and continue to support the industry
- Complete cost-benefit assessment in collaboration with Strategic Analysis, Inc.

Summary

- Relevance of activity strongly supported by DOE Manufacturing Workshop and DoD Manufacturing Fuel Cell Manhattan Project
- Demonstrated detection of CCM (electrode) and GDL/MPL defects on web-line using continuous webs at speeds of 30 foot per minute and higher
- Demonstrated detection of membrane defects on web-line using continuous webs at speeds of 30 foot per minute and higher
- Demonstrated detection of defects in multi-layer, multi-component membranes
- Demonstrated detection of defects in fired SOFC half-cells
- Demonstrated detection of MEA shorting defects with moving substrates
- Performed experimental and numerical studies to understand sensitivity, detection time, and operating characteristics of the IR/Reactive Flow Through diagnostic
- Completed segmented cell study of GDL PTFE content variability
- Performed segmented cell studies of effects of electrode defects

Acknowledgement

NREL Mike Ulsh Guido Bender Huyen Dinh Niccolo Aieta Bhushan Sopori

LBNL Adam Weber Prodip Das Rohit Pillai

CSM

Andy Herring Austin Manak

NJIT

HNEI Jean St-Pierre Tatyana Reshetenko

DOE Nancy Garland

TECHNICAL BACK-UP SLIDES

Technical Accomplishments: Optical Diagnostic

Gore membrane defect detection

- Studied experimental membranes for defect analysis
 - Gore PFSA ionomer + ePTFE reinforcement
 - Defects ~10-100 μm
- Detected defects with standard equipment setup
 - Applicable to high-rate or in-line measurement

Technical back-up slides: IR/DC

GDL/MPL defects

- Continuous roll of GDL with multiple MPL coatings
 - Fabricated by Ballard Material Products
 - Streak in first MPL coating, subsequently over-coated by 2nd and 3rd coatings
 - Repeating scratch ("dot")
- Detected streak defect in first MPL layer on web-line at 10 foot per minute
 - Also detected dots
 - Did not detect streak after over-coating, indicating the streak was leveled or filled by subsequent coats

Technical back-up slides: IR/RFT

Electrode Defects

- Response to reduction in defect loading (modeling)
- Response to flowrate as a function of substrate
- Repeatability

IR/RFT web-line concept

