
2012 DOE Hydrogen and Fuel Cells

Program Review

High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Start: 1 July 2009

End*: 30 June 2013

75% complete

(* no cost extension)

Barriers

- Manufacturing R&D
 - (A) Lack of High Volume Membrane Electrode Assembly (MEA) Processes
 - (F) Low Levels of Quality Control and Inflexible Processes.

Budget

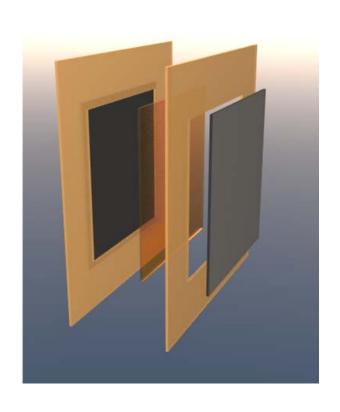
Total project funding: \$3.06M

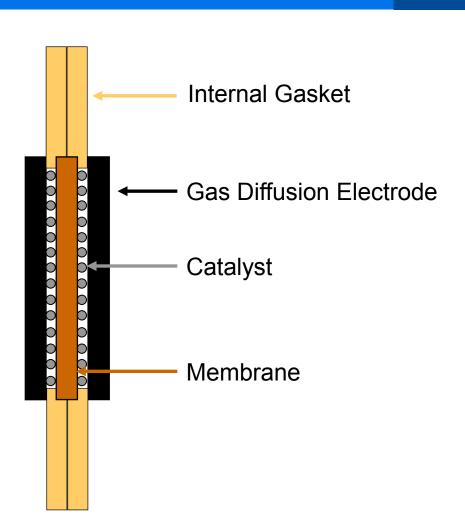
DOE share: \$1.99M

Contractor share: \$1.07M

Fed. funding received in FY11: \$302K

Est. Fed. funding for FY12: \$250K


Partners


- Case Western Reserve University
- X-Ray Optical Systems

Membrane Electrode Assembly (MEA)

5 Layer Assembly

Relevance

Overall Objective

- Reduce cost in fabricating gas diffusion electrodes (GDEs)
 - Focus on GDEs used for combined heat and power generation (CHP).
- Relate manufacturing variations to actual fuel cell performance in order to establish a cost effective product specification within six-sigma guidelines.
- Develop advanced quality control methods to guide realization of these two objectives.

Objective(s) this reporting period

- 3X throughput increase on full width/length cloth
- Scope focus: expand efforts on nonwoven paper

Directly Addresses Barriers

- (A) Lack of High Volume Membrane
 Electrode Assembly (MEA) Processes
 - · High speed or throughput coating
- (F) Low Levels of Quality Control and Inflexible Processes.
 - On-line Pt measurement.

Addresses key DOE targets

Targets: 1-10 kW, Residential CHP FC Operating on Natural Gas

	2008 Status	2012	2015	2020
Electrical efficiency at rated power	34%	40%	42.5%	45%
CHP energy efficiency	80%	85%	87.5%	90%
Factory cost* per kW	\$750	\$650	\$550	\$450

^{*}Cost includes materials and labor costs to produce 50k/yr stacks

Approach: Milestones and Go/No Go

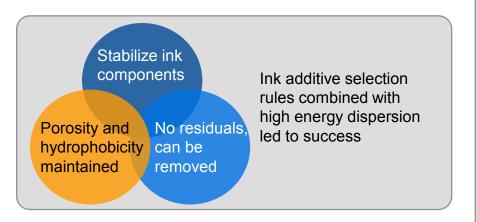
Tools

Build

Tools

Test

Task	Task 1: On-line QC to guide the process by Y1 Task 2: Model impact of defects by Y1	Task 3: full length coating by Y2 Task 4: Increase line speed by Y2 (go/no go June 2011) Task 5: Full cloth width roll by Y2/Y3; paper>best cloth total cost	Performance Defects/Uniformity Relate defects to performance	
Milestone	T1: On-line Pt measurement, on-roll porosity measurement T2: Verify Model, calculate defect limits	T3: >240 lin m T4: 2X throughput increase (go/no go): 3X final goal T5: full width (>100 cm) & length at 3X throughput: paper 30% lower total cost over cloth	Main Concept Use advanced dispersion and ink formulations to make aqueous solid - binder	
Status	T1: complete, modified for full width cloth. On-roll porosity canceled due to vendor failure T2: Base model established	T3: complete T4: go/no go met. >2X throughput T5: full width/length cloth >3X throughput. Paper at pilot scale	suspensions compatible	


Tasks 3-4-5: Inks for Full Length & Width Roll Coating, 2X speed

 Accomplishments: Extended ink formulations to stabilizing anode catalyst suspensions that have been subject to very high energy dispersion. Scaled microporous layer (MPL) ink 15-fold. Scaled all catalyst inks 10-fold.

 Key Challenge: MPL ink scale up caused severe bubble formation, which lead to variable viscosities. Solved through additive and process

modification.

	Cost decrease vs. benchmark	Capacity increase vs. benchmark
MPL	37%	3.0X
Anode	31%	2.1X
Cathode	40%	2.4X

Break-through in ink-making increased capacity, decreased labor content

Tasks 3-4-5: Coating Full Length & Width Roll, 3X speed

- Accomplishments: Quality gains preserved for length>300l.m, width 1.17m
- Key Challenge: Final product thinner than benchmark. Re-engineered MPL architecture to compensate for different packing densities

Metric	Benchmark-start	This Program	
Agglomerates (avg. over roll)	18/m²	1.6/m ²	
Pt variation (via on-line XRF, roll average)	+/- 2 gm Pt/m ²	+/-0.4 gm Pt/m ²	
Performance			
0.2A/cm ² H ₂ /air, 45cm ² test cell, 160 °C	0.657V	0.683V	
0.5A/cm ² H ₂ /air, 45cm ² test cell, 160 °C	0.573V	0.598V	
0.2A/cm ² , 1.4/5 Reformate (71% H ₂ , 27% CO ₂ , 2% CO)/Air, 45cm ² test cell, 180°C	0.668V	0.689V	
0.5A/cm ² , 1.4/5 Reformate (71% H ₂ , 27% CO ₂ , 2% CO)/Air, 45cm ² test cell, 180°C	0.571V	0.589V	
Note: reformate running at 5X air stoichiometry, 180°C			

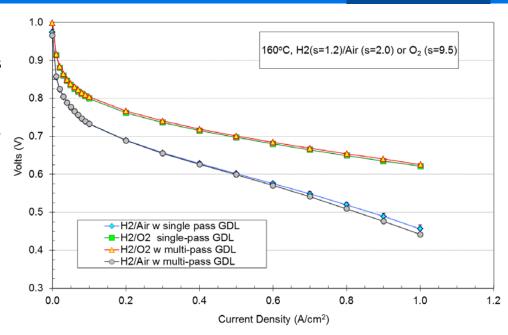
Significant improvement in quality

Task 4: Key Metrics for coating throughput

- Accomplishments: Exceeded both go/no go of 2X and program goal of 3X throughput. Effective throughput boost by reducing number of application passes.
- **Key Challenge:** Applicator settings with new inks different than benchmark. Significant optimization needed.

Throughput metric Normalized to Benchmark	Benchmark (at program start)	This Program (to date)
Average line speed, lin.m/min Sum (S_1, S_2, S_n) /number of applications (n), where S=coating rate of each step	1	1.16
Highest single line speed, one pass (lin. m/min)	1	1.67
Coating throughput, m ² GDE/hr	1	3.94
Cost Savings (in labor hrs)		75%

Coating throughput, m² GDE/hr is most relevant metric


Task 5: Non-woven/paper substrates

- Status: 2011 AMR demonstrated production machine scale MPL fabrication. 2011/12 focus was on substantial reduction of application steps for MPL and catalyst layer
- Approach: Increase viscosity of ink without loss of stability. Investigate new application process to handle higher viscosity inks
- Results: Demonstrated potential for single-pass MPL.

Non-woven Woven Non-woven Woven Light-box

Comparison of single-pass to multi-pass MPL

Target for non-woven is to reduce cost 30% over best woven configuration

Collaborations

Task 2 Defects

- NREL Michael Ulsh
 - Providing GDEs with defects for advanced defect detection

Tasks 3-4-5 (higher throughput GDEs)

- ClearEdge Power Systems Julia Song, Ph.D.
 - Validated materials for use in µCHP applications at stack scale
 - Valuable feedback on material thickness specification
 - Confirmed performance gain found at subscale testing with full stacks

These collaborations were initiated outside the original team tasks in this DOE program

Proposed Future Work Over last year of project

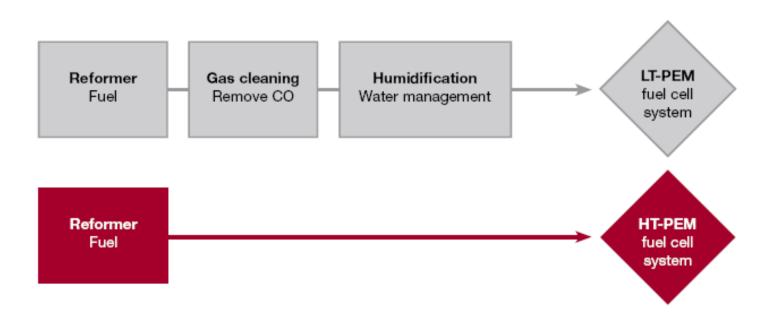
- Task 5: Demonstrate non-woven platform reducing total cost by additional 30% (materials + labor) over best woven scenario
 - Scale MPL to production level
 - Develop anode/cathode catalyst inks and application process that approach two or less coating passes

Summary Slide

- Reduced total GDE labor costs by ~75% due to new high energy dispersion with advanced formulations.
- Achieved June 2011 go/no go (2X throughput increase).
- Exceeded program goal (3X throughput increase at full width) to 4X improvement (by June 2012)
- Demonstrated proof of principle for one step MPL coating on non-woven

			Coating		Coating
Platform	Improved Ink	Coating Pilot	Production 1/2 width	Sintering	Production full width+throughput
Ol-H-	IIIK	FIIOL	1/2 width		wiain+inroughpui
Cloth					
MPL	37%	>55%	>55%		
Cathode	40%	>40%	>40%	This p	eriod (>50%)
Anode	31%	>40%		This period ((>50%)
Paper					
MPL					
Cathode					
Anode					
	-	——Р	hase I ———		Phase II

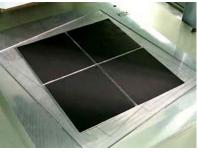
% indicates reduction in labor-hours. No benchmark for paper but have achieved similar or greater results compared to cloth


Technical Back-Up Slides

Background on high temperature MEAs

Benefits of HT PEM technology: Reduction of system complexity

High temperature PEM technology allows to simplify the fuel cell system, especially in the case of reformate feed.


MEA-components

2 x Subgasket

Polyimide

1 x Anode / 1 x Cathode

- Gas diffusion electrode (GDE) with catalyst coating
- Catalyst is coated on top of microporous layer

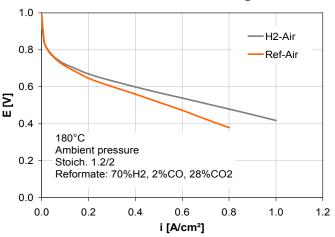
1 x Membrane

- PBI based and charged with phosphoric acid
- Catalyst is not coated on the membrane

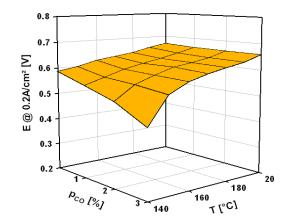
Celtec-P MEA Advantages

Technology

- Broad operating temperature window: 120 – 180 °C
- No humidification necessary
- High tolerance to CO and H₂S
- No water management system necessary for exhaust


Materials

- Membrane with Polybenzimidazole (PBI) and Phosphoric Acid (low cost)
- Gas diffusion electrodes (roll to roll processing)


Applications- end use

Simplified overall FC system

Performance under reformate gas conditions

Unique CO-tolerance

16 22.11.2011