

Cause and Effect: Flow Field Plate Manufacturing Variability and its Impact on Performance

2012 DOE Hydrogen and Fuel Cells Program Review

Project ID# MN011

Eric Stanfield (NIST) Mike Stocker (NIST)

May 16, 2012

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

October 1, 2009 September 30, 2012 80% Completed

Barriers

- B. Lack of High-Speed Bipolar Plate Manufacturing Processes
- F. Low Levels of Quality Control and Inflexible Processes

Partners

- Subproject #1 Only: LANL Tommy Rockward (Funded \$75K)
- Other Interactions & Collaborations addressed in each subproject section.

Overall Budget

Total Project Funding \$1.5 M Funding Received FY11 - \$200 K Funding for FY12 - \$175 K [FY11 deferred]

[Cost share not required but NIST contribution to effort estimated at ~ 40% to 50% matching, Subproject P1 Manufacturing Variability Study – 100% NIST funding in FY11 & FY12]

Subproject Overview

P1 Cause-and-Effect: Flow Field Plate Manufacturing Variability and its Impact on Performance

Objective: Develop a pre-competitive knowledge base of engineering data relating performance variation to manufacturing process dimensional variability. **Approach:** Using a statistically based design-of-experiments, fabricate experimental "cathode" side flow field plates with various well defined combinations of flow field channel dimensional variations; then through single cell fuel cell performance testing using a robust protocol, quantify the performance affects, if any, and correlate these results into required dimensional fabrication tolerance levels.

Benefits (Relevance): Provide bipolar plate manufacturers and designers/modelers with the data necessary to make informed tolerance decisions to enable reduction of fabrication costs.

- Dimensional Metrology
- Manufacturing Metrology
- Statistical Engineering

LANL

- Operational Knowledge
- Advanced Testing Facilities

Overview Cause-and-Effect: Flow Field Plate Manufacturing Variability and its Impact on Performance

Cell Specifications

- 50 cm² Hardware (Teledyne CH-50)
- Gas Diffusion Media: SGL 25 BC
- Commercially Available CCM 0.1 / 0.2 mg/cm²...Anode and Cathode
- Hydrogen Electrolysis-Grade) and Air (oiless-compressor)
- NIST Fabricated Reference Anode Plate and [10] Cathode Experimental Plates (POCO AXF-5QCF), Triple Channel Serpentine Design

Experimental Parameters and Level of Variability

Fractional Factorial Design of Experiments 2 ⁽⁴⁻¹⁾

- Sidewall Taper 0° to 10°
- Bottom Straightness 0 to 50 um
- Sidewall Straightness 0 to 50 um
- Variation-in-Width 0 to 100 um

Beginning-of-Test (BOT) and End-of-Test (EOT) Diagnostics – MEA Q.C.

- Electrochemical H₂ Crossover
- Cathode Side Active Area

Measurements

Performance Testing (Gas Access and H₂O Mgmt Impacts)

- Polarization curves in air measured in both directions
- AC-Impedance measurements

Cause-and-Effect: Flow Field Plate Manufacturing Variability and its Impact on Performance

Overview - Initial Protocol

- Conditions 80°C and 60°C, 50% and 100% RH
- Data collected in constant current mode with 2 minute settling times
- Utilization Rates 83.3% H2 and 71% Air
- CCM Usage:
 - Replaced between testing of each plate
 - Replacement from same batch and repeatability previously tested (< 5 mV)
- 25 psig back-pressure on both anode and cathode outlet sides

Technical Accomplishments and Progress Initial Protocol Results (All Plates)

Status:

- LANL polarization data [Presented 2010]
- NIST initial factor sensitivity statistical analysis [Ongoing 2012]

Take Away

- Factors and levels do have a noticeable impact
- Reviewers in 2010 raised concerns about appropriateness of 25 psig back pressure
- Incorporated an additional experiment with subset of plates for back pressure sensitivity testing [10 psig and ambient]

P1 Cause-and-Effect: Flow Field Plate Manufacturing Variability and its Impact on Performance Technical Accomplishments and Progress

Revised Protocol [Back Pressure Sensitivity Experiment]

Experiment involved worst performers 3C & 7C along with best performer 5C tested at 10 psig and ambient back pressures (anode and cathode)

Status:

- 3C & 7C tested, 5C broke during cell assembly (Presented 2011)
- 5C replacement
 - Plate material changed from POCO AXF-5QCF to AXF-5Q (for neutron imaging purposes)
 - Fabrication capability re-established (10/2011)
 - 5C fabrication completed (1/2012)
 - Dimensional verification (3/2012)
 - Pyrosealing by POCO (TBD) (additional sealing process due to material change)
 - Polarization curves by LANL (TBD)
 - Result correlation between materials (25 psig repeat)
 - Completion of back pressure sensitivity experiment Plates 3C & 7C Different Back Pressures

Take Away:

- Overall performance of each plate decreased along with back pressure [anticipated]
- Performance differences between plates remained, tracking nicely between back pressures
 - 5C testing not expected to change this conclusion

Neutron Imaging needed to verify.

P1 Cause-and-Effect: Flow Field Plate Manufacturing Variability and its Impact on Performance Technical Accomplishments and Progress

Neutron Imaging Experiment

Additional experiment based on questions raised at FreedomCAR Technical Team Presentation (3/2011)

Experiment planned using subset of plates representing best and worst performers along with the nominal design plate (rectangular cross-section with minimal dimensional variations) [1A, 1C, 3C, 5C, 8C]

Integrated 5C replacement with this activity to achieve two objectives

- 1. Repeat testing at 25 psig back pressure will serve to correlate any new results with previous results eliminating material/material processing variable
- 2. Use replacement 5C, complete back pressure sensitivity experiment and this plate will be used in the neutron imaging experiment

Status:

- Proposal for beam time experiment submitted (10/2011)
- Proposal approved (1/2012)
 - With positive reviewer comments
- NIST NCNR Imaging (NIST & LANL 7/2012 Tentative)
- Modifications required for imaging (in-process)
 - Aluminum endplates to replace original stainless steel (12/2011)
 - Replicate plates for experiment must be made from POCO AXF-5Q rather than original AXF-5QCF due to hydrocarbon content of cured floran sealing material (fabrication, dimensional verification, and sealing – in process)

Neutron Image Example Only

P1 Cause-and-Effect: Flow Field Plate Manufacturing Variability and its Impact on Performance Technical Accomplishments and Progress

Initial Statistical Analysis of Results Factor Sensitivity

[100% RH, 25 psig back-pressure ,all plates, data extracted at 2 A/cm²,

Ranked Order											
Factor	Effect (V*100)	Rel. Eff %	Fcdf Stat %								
12 + 34	18.59			*							
3	16.17	106	82.4	**							
1	15.28	101	79.4	**							
4	6.02	40	36.1								
14 + 23	-5.67										
2	-3.71	24	22.6								
13 + 24	-2.74	,									

• Interaction 12 or 34 or some combination of 1234 is most important

[1 = sidewall straightness and 2 = phase of the sidewall straightness of one side in relation to the other (width variation and wiggle OR just wiggle)]

[3 = bottom straightness (variation in depth) and 4 = sidewall taper]

- Factor 3 = bottom straightness (variation in depth)
- Factor 1 = sidewall straightness

* Inconclusive: A potential result of a fractional factorial experiment is that some two factor interactions can be "confounded"

** One negative aspect: although the relative importance of these three parameters is strongly suggestive the Fcdf statistic does not meet the criteria of being statistically significant > 95%.

P1 Cause-and-Effect: Flow Field Plate Manufacturing Variability and its Impact on Performance

Conclusions

- From VI data for both 50% RH and 100%RH, without statistics:
 - 5C and 8C best performers
 - 3C and 7C worst performers
 - 1C nominal rectangular cross-section made with exacting geometric precision NOT among the top performers.

- Varying back pressure doesn't change performance differences between plates.
- Controlled dimensional "chaos" or very controlled complex geometry (whichever is your preference) seems to be more beneficial than simple straight geometric shaped channels made with dimensional perfection.
- Neutron imaging will hopefully produce insight with regards to how the water moves in the different cell configurations.

P1 Cause-and-Effect: Flow Field Plate Manufacturing Variability and its Impact on Performance

Conclusions

- Employed statistical analysis in an attempt to uncover what factors and two-factor interactions were most important.
 - Results of the statistical analysis are preliminary only, further review of the data is needed prior to making definitive conclusions with regards to factor sensitivity, beyond the obvious.
 - Due to the "fractional" factorial nature of the design of experiments the two factor interactions identified by this analysis come in pairs and are "confounded"; meaning that you don't necessarily know without physics based interpretation which of the two interactions is most important.
 - Initial results using voltage data from each curve at 2 A/cm² from the 100% RH dataset we obtain a "strongly suggestive" but not "statistically significant" ranked order.
 - Initial results using voltage data from each curve at 2 A/cm² from the 50% RH yields a different ranked order, again suggestive but not statistically significant.
 - Common to both data set analyses is the significant importance of factor 1 (sidewall straightness)
 - Data needs to be investigated further at different current densities to evaluate consistency.
 - Analyses raises questions
 - Should the results from both datasets be consistent or different?
 - Is strongly suggestive versus statistically significant enough to make some conclusions?
 - Physics based insight is needed and an expert in the field of micro-fluidics and two-phase flow in fuel cells is currently reviewing the data.

P1 Cause-and-Effect: Flow Field Plate Manufacturing Variability and its Impact on Performance

Future Work

- Integrate physics based expertise
- Investigate statistical analysis further to understand potential inconsistencies
- Scrutinize data sets to ensure completeness
- Complete back-pressure sensitivity experiment with 5C testing
- Complete all fabrication and verification work in support of neutron imagining experiment
- Complete neutron imaging experiment
- Integrate what imagining reveals to better understand effects.
- Publish results by end of 2012

Technical Backup Slides

P1 Cause-and-Effect: Flow Field Plate Manufacturing Variability and its Impact on Performance

Technical Accomplishments and Progress

Design of Experiment Full Factorial 2⁴⁻¹ (4 dimensional parameters, 2 levels each with center replica point)

	Sidewall Straightness	Sidewall Straightness	Bottom Straightness	Sidewall Taper					
	Amplitude	Phase	Amplitude			Sequence		Drawing	
Part	X1	X2	X3	X4	Machining	Measuring	Perf. Testing	Cross-Section	Тор
9	0(25µm)	0(90)	0(25µm)	0(5)	1	1	1		
3	-1(0)	+1(180)	-1(0)	+1(10)	2	2	2		\$\$ {}
2	+1(50µm)	-1(0)	-1(0)	+1(10)	3	3	3		
4	+1(50µm)	+1(180)	-1(0)	-1(0)	4	4	4	Ш	\$\$ }}
8	+1(50µm)	+1(180)	+1(50µm)	+1(10)	5	5	5		\$\$ {}
5	-1(0)	-1(0)	+1(50µm)	+1(10)	6	6	6		
7	-1(0)	+1(180)	+1(50µm)	-1(0)	7	7	7	Ш	
10	0(25µm)	0(90)	0(25µm)	0(5)	8	8	8		8 8
6	+1(50µm)	-1(0)	+1(50µm)	-1(0)	9	9	9	1	\$
1	-1(0)	-1(0)	-1(0)	-1(0)	10	10	10		

Deliverables 3rd Quarter FY2009 – End of FY2011

P1 Cause-and-Effect: Flow Field Plate Manufacturing Variability and its Impact on Performance

