

Fuel Cell Technologies Program

Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting

Arlington VA

Project ID # PD016

May 17, 2012

Oil-Free Centrifugal Hydrogen Compression Technology Demonstration

PI: Hooshang Heshmat, PhD

Mohawk Innovative Technology, Inc.

Albany, NY

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start Sept 1, 2008
- Funding Authorized 2/28/09
- Extended End May 30, 2013
- 80 % Complete

Budget

- Total Project Funding
 - \$2,992,407 DOE
 - \$748,437 Cost Share
- FY11 Funding: \$620k
- Planned FY12 Funding: \$600k

Barriers

- Hydrogen Delivery Compressor
 - Reliability
 - System Cost
 - Efficiency of H₂ Gas Compression

Partners

- Lead: Mohawk Innovative Technology, Inc. Mohawk Innovative Technology, Inc.
 MiTi - Albany, NY
- Mitsubishi Heavy Industries
 MHI Hiroshima, Japan

Overview

Project Objectives

Design a reliable and cost effective centrifugal compressor for hydrogen pipeline transport

- Flow 240,000 to 500,000 kg/day
- Pressure Rise to 300-500 psig up to 1,200-1,500 psig
- Contaminant-Free/Oil-Free Hydrogen

	.je.egen	Project Target	
Category	2005 Status	FY2012	FY2017
Reliability	Low	Improved	High
Energy Efficiency	98%	98%	>98%
Capital Investment (\$M) (based on 200,000 kg of H2/day)	\$15	\$12	\$9
Maintenance (% of Total Capital Investment)	10%	7%	3%
Contamination	Varies by Design		None

Hydrogen, Fuel Cells & Infrastructure Technologies Program [DOE Publication]

Commercial Potential

Relevance

- Partner Mitsubishi Heavy Industries Compressor
 Corporation (MHI) Business Areas
 - Energy Field
 - Pipeline Compressors
 - LNG
 - Gas Injection/Processing
 - Petrochemical Industries
- Interim Outlet For Advanced Centrifugal Compressor Technologies In Meaningful Natural Gas And Other Industrial Uses

MiTi & MHI Using Two-Tier H₂ Compressor Design Approach

- Single-Entry versus Dual Entry Centrifugal Compressor Designs
- Computational Fluid Dynamics (CFD)
- Finite Element Analysis (FEA)

NIST

Material Measurement Laboratory

- Compatibility of Foil Bearing and Foil Seal Materials in H₂ Environment

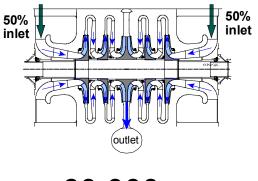
International Institute for Carbon-Neutral, Energy Research

Consultation on Materials Selection

Sandia National Laboratory

- Consultation on Materials Selection
- Recognized Compressor Design Consultant
- CFD Consulting Group With Compressor Expertise

Comparative View of Present & Future In Gas Compression Technology


ESE **Advanced Oil-Free Bearings Needed** Inlet Exhaust 4 **H**- \oplus Advanced Low Leakage Seals Needed Througout 05-0247B

12,000 rpm

6

Four Times Smaller In Size And Weight And Twice As Efficient SOA

60,000 rpm

Approach

Compressor Design Methodology

Compressor Design Analysis

• Mean Line Analysis, CFD, FEA

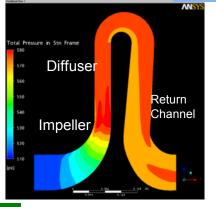
Sub-Component Design

- Foil Bearings & Seals
- Coatings

<u>Design Single-Stage Compressor</u>

- Impeller, Diffuser and Others
- Drive System & Test Loop

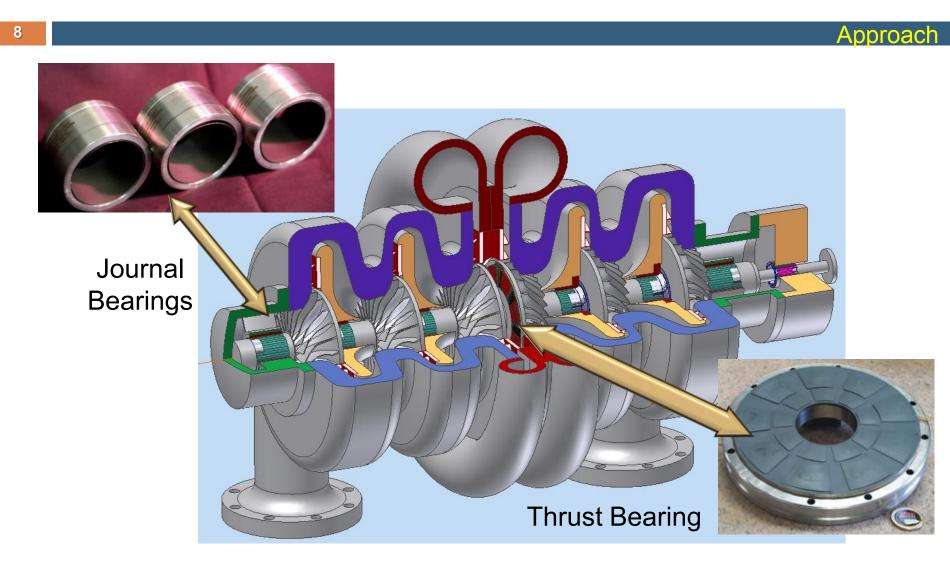

Single-Stage Proof Testing


Fabricate & Characterize Pressure & Flow

Scale System Design

- Predict Complete System Performance
- Update Multi-Stage, Multi-Frame Design
- Economic Analysis

Demonstrate feasibility of very high speed hydrogen centrifugal compressor

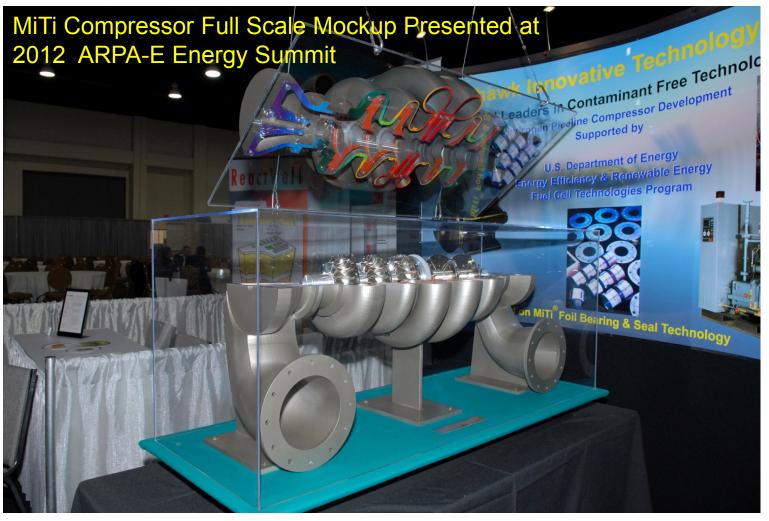


Approach

Modular Double Entry Centrifugal Compressor

Compressor Design Meets DOE Target

9


Relevance

Characteristics	DOE Target	MiTi Estimates
Efficiency (%)	98%	98%
Hydrogen Capacity Target (kg/day)	200,000	240,000 - 500,000
Hydrogen Leakage (%)	<0.5	0.2
Hydrogen Purity (%)	99.99	99.99
Inlet Pressure (psig)	300-700	350-500
Discharge Pressure (psig)	1,000-1,200	1,226 - 1,285
Total Compressor Package (\$Million)	\$15.6	\$7.3-\$12.5*
Maintenance Cost (% total Capital Investment)	3%	<3%
Annual Maintenance Cost (\$/kW-hr)	\$0.007	<\$0.005
Package Size (sq-ft)	300-350	145 - 160
Reliability (# of Systems Required)	High - Eliminate Redundant Systems	Very High – Oil-Free Foil Bearings Eliminates Need for Redundant Systems

* Capital and Maintenance Cost estimates based on data from (1) MHI for comparably sized NG compressor systems, (2) published oil and gas industry data and (3) from quotes for fabrication of major components of MiTi's compressor design, including H2 compatible materials. Eliminates Redundancies required for Positive Displacement Compressors Due to Higher Reliability, And Reduced Maintenance Costs of Centrifugal Compressor Design. Estimates for Compressor Efficiency, Flows, Pressures and package size based on stage and system design analysis as performed by MiTi, TurboSolutions and MHI. Estimated hydrogen leakage based on industry and MHI experience with Natural gas and H2 compressors adjusted for hermetic sealing approach of MiTi Compressor Design and number of required seals/joints in the overall system.

Full-Scale Hydrogen Compressor

Accomplishments and Progress

Materials Issues/Needs

11

Accomplishments and Progress

Structural Materials (Housing)

Durability under high internal hydrogen pressures (316L SS)

Shafting/Rotor Materials

High strength, fatigue endurance, high toughness (Beta Ti 10-2-3)

Bearings and Seals

- High elastic modulus, fatigue resistance,
- Material Characterization in H₂ and in thin film form (Beta Ti 15-3)

Tribological Coatings

Low friction, wear resistant, electrical/thermal properties (Korolon)

Hydrogen Barrier Coating

Reduce hydrogen permeability (TiN/CrN)

Preliminary material selection based on extensive literature search and consultation with hydrogen embrittlement experts at National Laboratories, NIST, Univ. of IL, and Others

Single-Stage Manufacturing Progress

12

Accomplishments and Progress

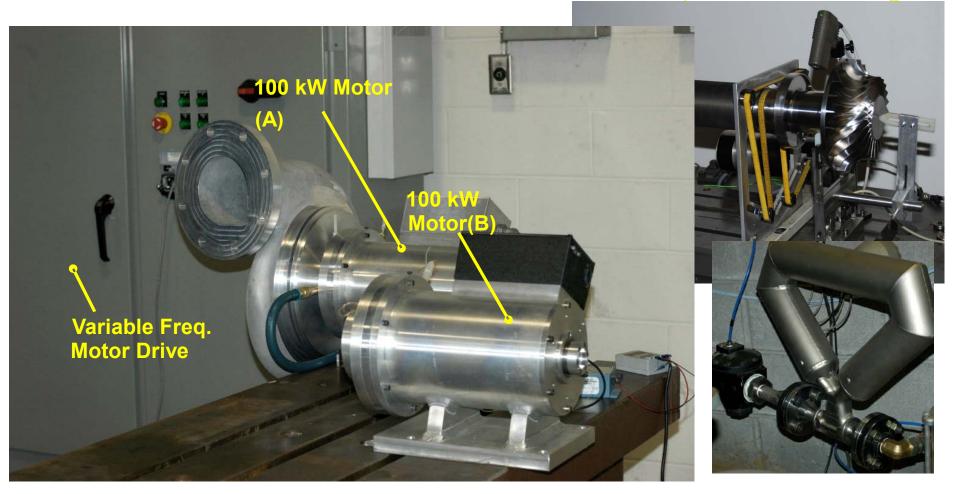
PM Motor Rotor/Stator Pairs

All components fabricated or acquired

Foil Bearings

Final Machining of Housings

Machined Titanium Alloy Impellers



MiTi Compressor Simulator Assembly Progress

13

Accomplishments and Progress

Two 100 kW motors, Compressor wheel and volute assembled and checked out

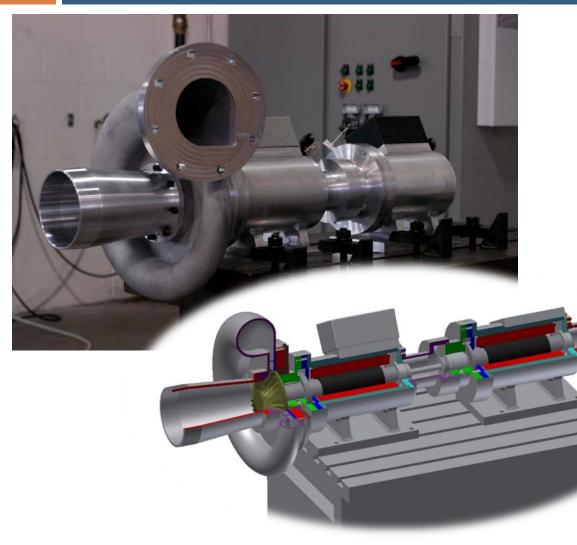
Compressor Test Facility at MiTi

14

Accomplishments and Progress

Partial Assembly

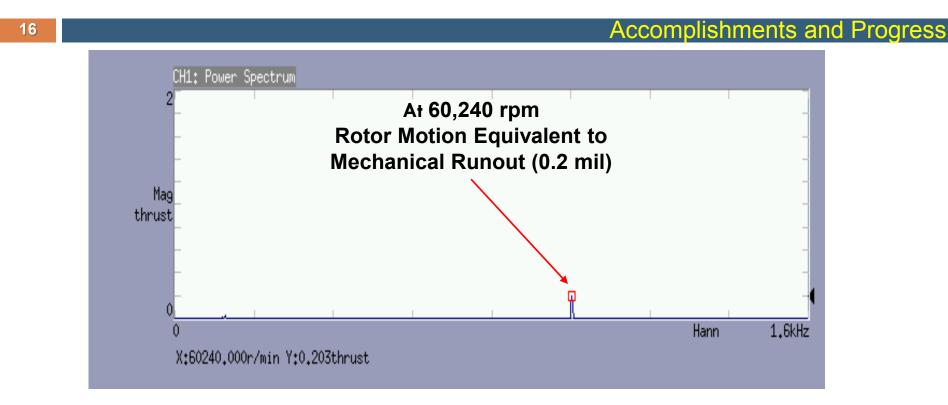
Cast Volute Final Assembly



Single Stage Compressor Has Been fully Assembled. Testing At Full Speed Awaits Completion of Dedicated Test Cell With Appropriate Safety Measures

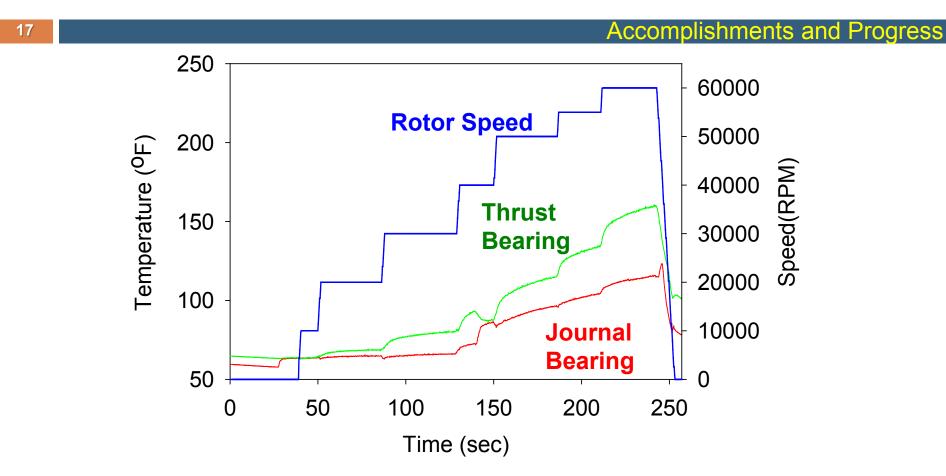
200 kW Gearless H2 Compressor

15


Accomplishments and Progress

World's First

- Oil-free
- 200 Kw PM Motor
- Internally Gas Cooled Motor
- Direct-drive -- No Transmission Or Gearbox
- □ 60,000 Rpm
- Made In USA


Motor Dynamic Verification Testing To Over Speed

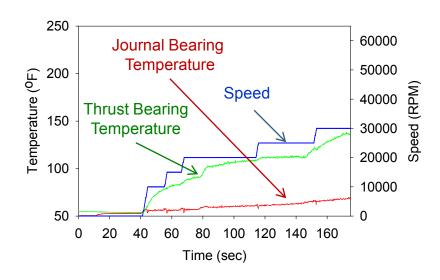
- Initial Motor Spin Testing Performed
- □ Testing up to 60,000+ rpm Completed for Each Motor
- Extremely Low Vibrations, Single Peak Only Due to Rotational Speed

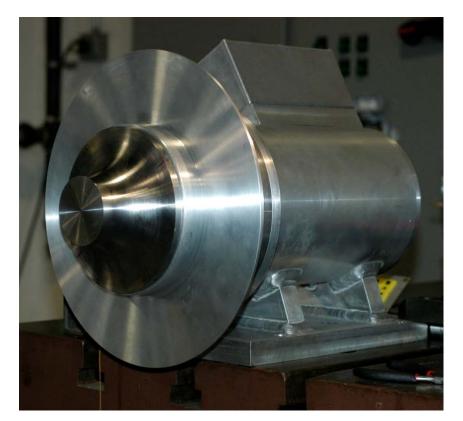
Compressor Simulator Speed & Bearing Temps

Thermally Stable - Maximum Bearing Temperature < 66 C

Internally Air Cooled @ 9 gm/sec (0.1% of Total Compressor Output)

Mohawk Innovative

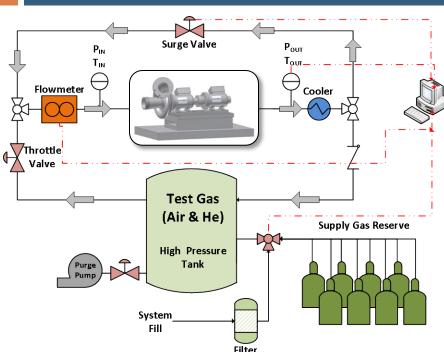

Compressor Dynamic Verification Simulator

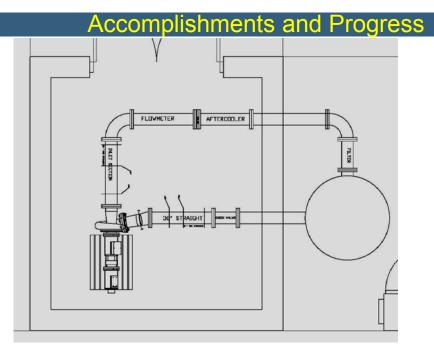

Accomplishments and Progress

Demonstrated Stable Motor Operation
 With Oil Free Foil Bearing & Bladeless
 Ti Wheel

18

- Testing Successfully Completed for Several 3-Minute Cycles Up To 30,000 rpm
- Testing To Full Speed (60 Krpm) Requires Dedicated Test Cell





Closed-Loop Test Facility Design

- Compressor System Testing Underway in Air
- Closed Loop Helium Testing Per PTC-10 Being Prepared For Summer 2012

- Safety Measures For Full Speed Testing Requires
 - Dedicated Facility Required
 - Reinforced Enclosure
 - Fully-remote Operation
 Capabilities And Data Acquisition

Future Work

Simulated Hydrogen Compressor Testing

- All Testing to be Conducted in Accordance with Industry Standard ASME PTC-10 with Air and He
- Testing to be Conducted at MiTi
 - Validate Compressor with Foil Bearings and Seals
 - Demonstrate Oil-Free Coupling Technology with Foil Bearings
- MHI Design To Be Tested at MHI
 - Fabricate and Validate MHI Compressor Stage
- Critical Comparison of the Two Designs (MiTi/MHI)
- Hydrogen Compatibility Evaluation of Foil Bearing and Foil Seal Materials at SNL/NIST

Future Work (Continued)

Design Refinement & System Selection

- Based Upon The Single Stage Data, Hydrogen Centrifugal Compressor Design Will Be Refined To Account For The Differences Between Test Data And Analyses
- Select Double (MiTi) Or Single Entry (MHI) System Design Approach And Integrate Best Features Of Both Into The Selected System
- Use The Stage Design As Reference For Subsequent Scaling And Streamline Trimming As Needed To Configure The Full Multi-Frame, Multi-Stage Modular Compressor System Concept
- Using Empirical Data, Estimate Multi-Frame Compressor System Performance, Total Intercooler Heat Load And Total Driving Power Required Per Frame
- Refine Estimates Of Capital Costs And Compare To The Established 2017 DOE Target For 200,000 Kg/Day System

Refined Multi-Stage/Multi-Frame Compressor Concept (FY09)

- Established Stage Pressure Ratios and Flows
- Defined and Selected Optimum Operating Speeds
- Selected One Stage for Detailed Design and Verification Test

Conducted Detailed Compressor Design (FY10-11)

- Established Detailed Flow Paths Including Inlet, Impeller, Diffuser and Return Channel Using Computational Fluid Dynamics at Several Operating Points
- Designed Foil Bearings and Seals Using Coupled Elasto-Hydrodynamic Analysis
- System Designed Using FEM Dynamic and Stress Analyses with Titanium Alloys

Completed Fabrication and Initial Verification Testing of MiTi[®] Hydrogen Compressor Stage – Additional Testing is Underway (FY12)

MiTi's Advanced and Very High-Speed, Oil-Free Centrifugal Compressors Can Meet Hydrogen Delivery Needs

23

□ Next Slide, Please.

Assessed Pros and Cons for MiTi and MHI Hydrogen Compressor Designs

24		Pros	Cons
	MiTi Design Double Entry	Inherently Internally Balanced Thrust Forces	Higher Parts Count
		All Stages Derived from Common Wheel Design – Economies of Scale	Control of Axial Clearance Requires Close Attention
		Modest Tip Velocities for Hydrogen Environment (25% Lower than MHI)	Careful Design of Double Inlet/Discharge Piping Required
		High Stress Safety Margin	
	MHI Design Single Entry	Fewer Parts	Unique Impellers used in each Frame
	•	Fewer Parts Close Control of Axial Clearance	
	•		Frame
	•	Close Control of Axial Clearance	Frame High Tip Speeds Required

MiTi Compressor Design Analysis

25

Double-Entry Multi-Frame Compressor

- 6 and 9 Stages (2 and 3 Frames)

Exit Pressure > 1,200 psi

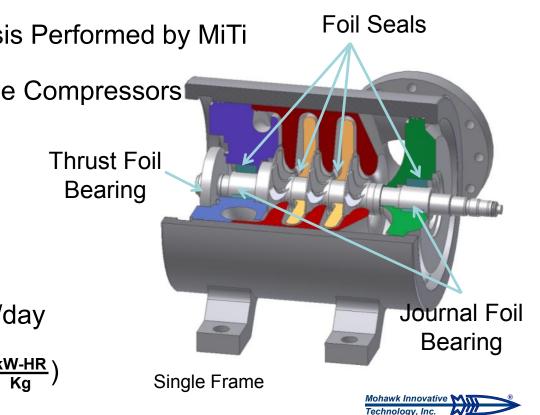
□ Power: 7,800 – 12,000 HP

□ Tip Speed: 1,500 – 2,000 ft/s

Mass Flow: 240K – 500K kg/day

Max Bearing/Seal Temp: 180-200^c

□ Specific Energy: 0.48-0.59 $\left(\frac{kW-HR}{Kg}\right)$


Single Frame Fully Assembled, 3-Frame System lohawk Innova<u>tive</u> Mar

Technology, Inc.

Mitsubishi Compressor Design Analysis

- Single-Entry Multi-Frame Compressor
 - 7 and 9 Stages (2 and 3 Frames)
- Design Developed by MHI with Input from MiTi
- Bearing/Rotor Design Analysis Performed by MiTi
- Design Based on NG Pipeline Compressors
- Exit Pressure: > 1,200 psi
- Power: 8,300 12,000 HP
- Tip Speed: > 2,000 ft/s
- Mass Flow: 240K 500K kg/day
- Specific Energy: 0.44-0.65 $\left(\frac{kW-HR}{Kq}\right)$

Multi-Stage Compressor Design

- MiTi Double-Entry
- MHI Single-Entry
- Excellent Correlation
 Between the Two
 Designs Within the
 Operating Range

Design Comparison: No. Stages vs. Tip Speed for Three Different Pressure Ratios 45 MHI 40 (Dashed) 35 30 -PR = 2.4No. of Stages 25 •PR = 3.0 20 PR = 3.3315 **MiTi**[®] (Solid) 10 5 Operating Range 0 800 1000 1200 1400 1600 1800 2000 Tip Speed (ft/s)

Mohawk Innovative

Beta Ti Alloys for Rotating Group & Foil Bearings

28

Accomplishments and Progress

Technology, Inc.

Beta TI Alloy	Ultimate Tensile ksi	0.2% Yield ksi	% Elongation	Fatigue Threshold ksi.in ^{1/2}	Comments
Ti-10-2-3	<mark>174 →116</mark>	165 → 90	8 → 20	2.7 → 5.5	Ductility Gain
Ti Beta C	145 →160	128 →162	$37 \rightarrow 3$	4.5 ightarrow 1.8	Ductility Loss

Mechanical properties change as a result of hydrogen charging for solution annealed alloys (Christ et al 2003) .Mechanical Properties of Beta Titanium alloys in air: properties depend on heat treatment (International Titanium Association).

Material	UTS ksi	Hydrogen Embrittlement	Modulus ksix10 ³	Fatigue Limit ksi	Thermal Expansion µin/in F	Electrical Resistivity µohm in	Typical properties of several alloys
X-750 Ni	192	YES	31	80	7.8	48	in air as
316L SS	70	NO	28	37	8.6	30	candidates for
Ti-15-3	200	NO	14.5	87	4.7	55	foil bearing fabrication
Ti Beta 21S	190	Yes	15	?	5.3	53	