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Project Overview

Timeline Barriers

e Start date: October 2004 F. Ga§e0us h.ydrogen storage and tube
trailer delivery cost

e End date: October 2012 G. Storage tank materials and costs

 Percent complete: 85% Targets
Exceed DOE 2012 delivery targets:
Budget * Delivery capacity: 700 kg - > over 1000 kg
. . e Tube trailer operating pressure: 7000 psi
 Total project fundmg * Tube trailer capital cost: < $500/kgH?2
— DOE: $1.45M Partners

B , Ongoing joint projects with
- C?.pencer. .$135. k/ngvl - US Agencies: NASA, NIST, FAA,
unding recetved in * and DOT (NHTSA); various

— $.240 Kk composite/vessel manufacturers
e Funding for FY12: * Spencer Composites (SCC)
— $200 k e Structural Composites (SCI)

* Lincoln Composites

|
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Relevance: Glass fiber vessels reduce hydrogen delivery cost
through synergy between low temperature (140 K)

hydrogen densification and glass fiber strengthening
= Colder temperatures (~100-140 K) increase density ~70% with small increases
in energy required for chilling, with affordable capital already available at
gas-terminal scale (N, liquifiers)

gH, density X trailer volume => delivered-H, trailer capacity
= Low temperatures are synergistic with glass fiber composites

higher glass fiber strength (at 140 K compared to 300 K)
ultimate stress gains > 80% published for A-Glass (1972)
LLNL observed gains > 40% (2008), recent S-Glass data

but low T’s would eliminate the (~30%) capital savings from
plastic-lined vessels or need to use cyanate esters (hazmat)

~ LLNL and SCC innovated liner plastics for low-T CPVs

= Glass fiber (~$6/kg for E2-Glass vs. ~$23/kg for carbon fiber) minimizes high
materials cost for high strength composites

= Optimized pressure (~7,000 psi) minimizes delivered H, costs, same design can
deliver up to 12,000 psi or build cascade -

= Significant savings downstream in filling stations and vehicles
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Relevance: Updated model predicts

cost advantage for 140-200 K H,, delivery

Steel ‘Proven’ 300K 200K 200K 140K 140K
Delivery Container T-:::zr Graphite 3:32? i:ng c:fr:;iy) i::f C;:)n:c:(i.ty)
Structural Material  [only Welded Graphite / Glass / Glass / Glass / Glass / Glass /
steel is not a composite] | [H2A 2005] Epoxy Epoxy Epoxy Epoxy Epoxy Epoxy
Mass (kg Hs.delivered) 340 1,000 1,000 1,000 1,803 1,000 2,348
MEOP (psi) [SF = 2.25] 2,640 6,000 6,000 6,000 6,000 6,000 6,000
T (filled, K) 300 300 300 200 200 140 140
Delivery Cost ($/kg-Hz.q) 1.54 1.13 0.95 0.91 0.84 1.01 0.82
Personnel+Cab ($/kg-Hz.q4) 0.61 0.20 0.20 0.20 0.15 0.20 0.1
Compr. Energy ($/kg-Hz.q) 0.12 0.16 0.16 0.16 0.16 0.16 0.16
Compressor ($/kg-Hz.q) 0.08 0.10 0.10 0.10 0.10 0.10 0.10
Cooling Energy ($/kg-Hz.q) P QN L+SCC - 0.05 0.05 0.12 0.12
Refrigerator ($/kg-Hz.q) / - - - 0.06 0.06 0.12 0.12
Trailer ($/kg-Ho.a) 0.21 0.15 0.15 0.14 0.11 0.14 0.07
Vessels ($fkg-|'|2-u) 0.52 0.52 0.34 0.20 0.21 0.17 0.14
Vessels Cost ($) 165,000 470,000 305,000 186,000 352,000 155,000 306,000
H2 Density (kg/m®) 13.73 26.54 26.54 36.64 36.64 47 68 47.68
Total Volumetric Eff. (%) 56% 45% 45% 44% 47% 36% 54%
Vessel Volumetric Eff. (%) 70% 84% 80% 84% 85% 85% 86%
Fiber Strength (ksi) ; 700 500 750 750 900 900
Vessel Wall Strength (ksi) 60 385 275 412 412 485 485
Vessel Mass (w/o-liner, kg) 40,000 10,291 15,882 7,267 12.426 5,327 11,533
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Approach: 3 Phases (stretched out to 4 years) remove technical risks

* Fundamental innovation in plastics for liners and composites
ROMP plastics are tough, stiff, strong, thermosetting = big AT
Ring Opening Metathesis Polymerization (Chemistry Nobel Prize)

* Program plan knocks out technical risk for all key unknowns :
compliance, toughness, strength, permeation, novel phenomena

Phase 1 Phase 2 Phase 3
I ¥ B I ¢ » ﬁ
R Boss Liner Batch" Burst Burst ' Cycle
Tooling of 3 24" Test Test ‘ Test
([B)Z;li\:;?éfs Vessel #1 Pdrformanc Cost
Redesign
1
Material Studies
| | | | \
3" Subscale Protoypes \ rmeation
| | \ R
Tooling > P-cycling
T Burst & \ \
i Facility > Production
5):e5|gn§ Diameter Length Temperature P-variants Post-
rozen Cycle
Burst
Test Plans X % X X Test
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Approach: Eliminating All Realistic Failure Mechanisms for Cold
Hydrogen Delivery in Novel Composite Pressure Vessel Technology

* Program to accomplish this goal — planned and actual testing
* Manufacturing innovation encountered several road blocks
= Ability to engineer this novel technology

 Risk of wishful thinking counteracted by trial and error

o Full scale CPV test program found to be necessary to
eliminate realistic risks (of actual failures during scale-up)

« Failure Analysis methods being developed by NASA/DoT

* Proof of Concept tests = hydrostatic burst, P+T cycling, and
long duration (weeks) hydrogen permeation = measure P(t)

« Very dangerous tests of experimental vessels at high P-H2

o Site selected and in preparation for > 10 MJ explosive-
potential testing, no longer DOE funded or LLNL specified

* New Science required to overcome problems discovered
» Testing of subscale and full scale test articles — discoveries
* Mathematics required to deal with Stress Rupture likelihood
« Has very high leverage over capital cost of cold glass fiber E
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Manufacturing Readiness Levels (MRLs, used by DoD):

This cold glass trailer project began at MRL 3 and will achieve MRL 7 at the
end of Phase 3. Initial estimates of MRL 4 onset achieving MRL 8 don’t
alter project being DOE’s only mid-MRL Hydrogen Infrastructure effort.
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Failure Modes for Composite Pressure Vessels — Ways CPVs Fail

* NASA, DoT, and NIST have been collaborating to catalog and
instrument actual CPYV failures (both in service in and in labs)
* Ongoing activity has organized them into diagnostic methods
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Accomplishments: The First Fault Tree
for Fiber Composite Pressure Vessels

Meoidag e {porosty
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ponents

Fault Tree |
( Fail

" Testing as-manufactured and
post-service-life CPVs with a
repeatable test program can
eliminate proven risks

|




Permeation Test Facility Under Construction to Determine Rate
of Hydrogen Escaping from Full Size Tanks Under Maximum
Service Pressure at Temperature Extremes =» Severe Hazards

* Transport 'coffin' keeps
CPV's clean, allows
them to be trucked
without impact damage

over dirt roads, and

lowered into dug 'berm’

ermeation test 248
rig in design phase (=

= o'= Buried in mowed lot, over
100' from trees, in guarded

_~ private forest, under > 12” of
i sand bags atop steel decking &
plate, for 1-8 weeks/test under 5=
T-controlled dry gN2 ambient &
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Proven Failure Modes of Integrated Trailers = ISO Containers
Optimized to Protect Their Contents vs. Road and Lift Hazards
= Best way to keep contents and their o . |

environment from interactions that
can damage them (or harm us)

* Impacts, leaks, large mechanical
loads, corrosion, localized loads. ..
Designed to be handled, dropped...

Failure Modes Anticipated for Integrated Trailer = Loss of Cab
Propulsion, Loss of Insulation, Fire on Exterior of Container

= Break up possible Complex Chain Reactions with :

CO, + slight overpressure inside container,
Coatings vs. Mass Diffusion

Suspension of CPV's vs. Shock Loads
3 Layers of Insulating Tiles
Redundant + Overlapping Relief Device's
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The Refrigeration Problem: a realistic comparison between
delivery options calls for an understanding of cooling costs

80 T
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The Insulation Sub-Problem: no risk due to weakening as a result
of warming unless stranded for weeks

200

H, losses can be
avoided due to the
large size of our
container, its high
pressure capability,
and a strength
margin that must
;:ggg Eg tlgrzmks be exceeded before
286 W at 200 K forced Ventlng (via
_ a thermal relief
155 K Start in 115 F amblent Time (days) system) is required

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

190

-
(o]
o

No-vent threshold ’
For 10% margin

Temperature (K)

160

180

Prototype insulation tile development: low- and high-emissivity
faces, outside an internal anti-bending structure, clamp gap width
in a planar vacuum (metal foil, welded, no-recharging) inner layer

|
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Scale-Up Liner Process Failure Mode: overcome with multi-pour
introduction of ambient-T ROMP liquid into liner mold tooling

closed mold was poured with
a single shot of ambient-T
ROMP, then spun on 2 axes

ame

Unpleasant Surprise: 20 minute 4,
“pot life” worked smoothly for g
molding 48” liners — yet emerged

from the mold in 2 pieces at 114”  catalysis waves propagate through
ROMP, retarded by thermal inertia E

>Z
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Considerably More Understanding Gained
on Why Vessel Liners Failed at Low Strain

Ultimate Strain Disagrees
with Tensile "Dog Bones"

=

; }(/ \\\\
cracks Mechanical A
: : Chemical
with : A / \
extreme = 4 ‘\
. multi-axial N hovel . / \ bubbles on
detail strain &pay phenomena y \ crack
stress . \I‘\. in bul.k \ surfaces
* concentration ‘ material \
i rll{ h-‘-.‘--""“x = - ///
requires f . differential 4~ Y
extreme 4 shrinkage at
anisotropy material properties ~__— interface
\ i f T y 7 \-\
\k d/l/S/g:ontln\Lil\ty . release of <« / e
| e AN partial bond )v/ EN
Diffusion time 4 I Y outgassing
nonuniformity [ ‘corrosion'
Process-
crater induced
defects of

with fangs

“tells all”
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Second Generation tooling yields first successful burst test
of full scale (23” diameter) S Glass fiber pressure vessel
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Failure Mode not observed previously
in hydroburst testing of composite
pressure vessels proves liners and seals
operate at strains > trailer design levels

DCPD Liner Burst Test 1/10/11

\

Strain, infin

= o ~ < — @
% ) = o 3
0 = 54

Failure Mode
shown with
loose failed

hoop fiber
layer cut
away




Failure Modes that Might Be Suppressed by Tougher Plastics

* Mechanical Damage — major wemoninemwemms
cryptic (not easily noticed) |
failure modes in low-volume
production, during CPV
installation, and in service

" More prevalent in metal-lined
(Types II and III) CPV's, but
also very likely in cold, weak
HDPE CPYV liners

" Testing about to commence
by impacting 3” ROMP CPV
liners at White Sands (NASA
lab) P toughness at T = 77°K

* Blast-shielded room and rig
have potential to observe
shrapnel emerging from high-
Pressure (gas content) bursts

* Chain reaction accidents can
be precluded by tougher
CPV's
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Preliminary Testing Establishes ROMP Plastics are Tougher

Practicing LN

cool
down
for
WSTF
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= Test tower at SCC set up to
impact 3” subscale ROMP
plastic liners and ASTM
D5628 flat cast plaques

= Standard 3/8” thick plaques
deform but do not crack at
140 ft-1bf impact energy (vs.
toughened epoxy at 45 ft-1bf)

* Cylindrical liners withstand
~twice the impact energy vs.
thinner flat plaques of the
same thickness as liner walls




'Nanocracking' — The Manufacturing Failure Mode that cost this
project at least one year, may never have been previously observed,
and may not occur in non-ROMP plastics (= a Science Spin-Off)

nanocracked
region fails with
> 3(0-fold
difference
between
ultimate tensile |
and shear strainf 8
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CAT X-Ray — A Superb Diagnostic Tool vs. Manufacturing Defects

X-rays can image sub-
micron patterns of
different atoms non-
destructively through
~1 centimeter of

carbon/epoxy CPV Fiber-matrix _
Wa]l, or B(). millimeter <ebending Fiber-pullout

of glass/epoxy

& RN .f_.,;g._tfl,z'_;{t

First-ever nanoscale image of
high-performance S Glass
fibers in pultruded epoxy
matrix (field of view shown is
16x16 microns) shows innards
of one fiber likely segregated !
Soon to be applied to the
“smoking gun” crater of
nanocracking (see Slide 20) LLg
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Stress Rupture — The Widely-Recognized Failure Mode Limiting
Glass CPYV Service Life (and thereby determining Capital Cost)

» A realistic risk 'proven 'for Glass
CPV's by1980s LLNL/DOD testing

* Plate Glass life under load suggests
moisture to blame for erroneous
LLNL fiberglass service life results

= NASA WSTF is conducting
shielded experiments on hundreds

of CPVs

. Shils searate PV's under months of
hydro-static testing, ~25 sensors/CPV
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Fitting the Number of Survivors to Weibull's Distribution

* Originally claimed to be “ad hoc”, The Weibull
Distribution is one of only two Extreme Value

Distributions o=
Pr {xsampled S } = 1 o eXp _( o )

" Generations of grad students taught the links-in-a-
chain metaphor for large numbers of identical risks,
never taught to examine the assumptions leading to

EVD’s Peain
100%
" Artificial
90% ¢ Graphite Data
Materials . TS WS
Kevlar Fit
can . 0
N “..‘ Glass Fit
violate these . R ————
assumptions so * log[time (hrs)]

le-02 le+00 le+02 le+04 le+06 le+08 le+l0 le+l2

Kevlar is a registered trademark of E. I. du Pont de Nemours and Company

|
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What Escapes Notice Until More Time and More Units-Under Test

* Multiple failure modes are realistic in most engineering

* If independent, their logarithms of Pr(OK = unfailed) add
together in situations where the system fails if one or more
of the instances of every failure mode fail (since their
individual probabilities-of-not-failing multlply)

log[P{OK}] 1+

= Plotted against
some other axis 7/
that failure modes . ... .- 7 L Gumbel]
depend on (such '
as applied stress) :

" Weibull modes
(and all power- 0.01 44
law, fat-tail
modes) combine
into an overall
Weibull 0.001

0.2 0.3 0.4 0.5 0.6 0.7 0.8
* Gumbell (the other, much-more-well-behaved Extreme

Value Distribution) combine into an overall Gumbell
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Weibull modes;
until the number
of instances;
(e.g. experiments|
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Collaborations: LLNL is teamed with rocket innovators eager
and able to develop novel, very large composite parts

18 in a box

=

VS.

O

= By = 1cylinder
* DoD/MDA restarted developing ultra-low-cost ROMP in 2005

= DARPA sought 48” diameter in 2003, remains unproven in large vessels
= compatibility with H, since tested, strength retained below at least 77K
" Aerospace and Maritime applications, also energy terminals

* May make sense for less mass- and volume-constrained Rail
* Truck mounting for ISO-container-sized vessel already developed
= Mounting inside insulated ISO container still makes sense for rail

|
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Proposed future work: Joint DOE/DoT Cold-cH, Field Demonstration
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Located contacts with potential DoT Program Managers likely to be
regulators of cold safety subsystem requirements
Building Industrial Partnerships: eager-to-adopt gas vendors, trailer
integrators, CPV and materials intellectual property
Materials Research and Development efforts must continue for hydrogen-
specific and cold-specific applications :

strength, compliance, permeation vs. T = test + improve

stress rupture life(T) testing (a by-product of trailer tests)
Expect further beneficial changes to properties : toughness, hydrogen and
water permeation, lack of FC-poisons' leaching

(subscale vessels and mitigation layers permeation testing)
Expecting ROMP plastics commercial availability in 2012
Design and modeling efforts required: insulating tiles, acceleration-loaded
CPYV suspension, expansion isolation from container, economic modeling
of built trailer costs and tooling improvements at production-line
quantities

|



Summary: We are demonstrating glass fiber vessels that
minimize delivery cost through cold strengthening

= Second batch of full-scale glass fiber vessels demonstrated
manufacturability of all trailer processes and components
* Third batch currently being manufactured is full Type V CPV
with 25 ksi LN-service-compatible PTFE-over-316 seals
* Graphite epoxy version of third batch (designed 10 ksi burst)
currently undergoing full ASME X Standard qualification
= Successfully (water) burst tested full scale 24” vessel at 300K
with earlier seal design sufficient for P(burst) at 20,000 psi
= Third batch seal design in 6” subscale (full Type V CPV)
currently in cycle testing; safe enough for H, permeation test
shrapnel-safe plan for 300K, then 100K (not by LLNL/DOE)
* Proceeding to scale up to single-cylinder ISO-scale vessels
without DOE funding, likely to require until 2013 to prove
= Expecting new ROMP plastics commercial availability in 2012
= Development pathway for large vessel delivery underway
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