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Timeline
* Project start date Jan. 2007
* Project end date Oct. 2012*
* Percent complete 60%

Budget
« Total project funding (to date)

— DOE share: $1000K
* FY11 Funding: $200K
 FY12 Funding: $100K

*Project continuation and direction
determined annually by DOE

Overview

Barriers & Targets
Pipeline Reliability/Integrity
Safety, Codes and Standards,
Permitting

High Capital Cost and
Hydrogen Embrittlement of
Pipelines

Partners

DOE Pipeline Working Group

— Federal Labs: Sandia, Oak
Ridge, Savannah River, NIST

— Universities: Univ. of lllinois

— Industry: Secat, industrial gas
companies, ExxonMobill

— Standards Development
Organizations: ASME
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* Why steel hydrogen pipelines?

— Safety of steel pipelines well understood (e.g., third-party
damage tolerance, vulnerability of welds)

— Hydrogen pipelines safely operated under static pressure

« Demonstrate reliability/integrity of steel hydrogen
pipelines for cyclic pressure

— Address potential fatigue crack growth aided by hydrogen
embrittlement, particularly in welds

« Enable pipeline reliability/integrity framework that
accommodates hydrogen embrittlement

— Ensure relevance to H, pipeline code ASME B31.12

* FY11-FY12: quantify effects of O, impurities on
fatigue crack growth laws for X52 steel in H, gas

Objectives/Relevance
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* Apply unique capability for measuring fracture
properties of steels in high-pressure H,

— Fracture properties serve as inputs into reliability/integrity
assessment as specified in ASME B31.12 pipeline code

— Milestone: Determine the threshold level of O,
concentration required to mitigate accelerated fatigue
cracking for X52 steel in 21 MPa H, gas (

)

— Milestone: Measure the fatigue crack growth law for X65
pipeline girth weld in H, gas ( )

Approach

 Emphasize pipeline steels and their welds identified
by stakeholders as high priority

— Provide feedback to stakeholders through DOE Pipel
Working Group rﬂ’f‘]
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ability/integrity assessment framework in

ASME B31.12 requires fracture data in H,
R critical crack depth (a;) calculated cycles to critical
da/dN A using fracture threshold data crack depth (N,)
measured in laboratory 1.0 / ___________________________________
H, gas ' :
ala, '
calculated using fatigue
crack growth law
da/dN = C[AK]™
> N/NC 1.0
AK
N T  Two fracture properties in H,
~  ap  AK=Ap[f(a, t,Ro Rl needed
Hy \, H; —Fatigue crack growth law
= H ? = —Fracture threshold
R

 Reliability/assessment framework
accommodates H, embrittlement
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re data in H, measured using specialized
capabilities: fatigue crack growth

* Material
—X52 ERW pipeline steel

 Instrumentation
—Internal load cell in feedback loop

—Crack-opening displacement measured
internally using LVDT

—Crack length calculated from compliance

» Mechanical loading
—Triangular load-cycle waveform
—Constant load amplitude (increasing AK)

* Environment
—Primary supply gas: 99.9999% H,
—Other supply gases: H, with 10-1000 ppm O,
—Pressure = 3,000 psi (21 MPa)
—Room temperature
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- M red fracture properties of technologically
= a®evant steel: API 5L X52

» Tested same X52 steel from DOE Pipeline Working
Group tensile property round robin
— Stakeholders expressed interest in X52 steel

 Tensile properties
— Yield strength: 62 ksi (428 MPa)
— Ultimate tensile strength: 70 ksi (483 MPa)

base metal

ERW seam
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md onset of H,-accelerated fatigue
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SEM image showing hydrogen-induced
intergranular cracking

* Increasing O, concentrations systematically mitigate H,-accelerated fatigue

crack growth

— Onset of H,-accelerated fatigue crack growth displaced to higher AK

At O, concentrations <100 ppm, H,-accelerated cracks propagate along
grain boundaries
» O,-affected fatigue crack growth laws lead to enhanced reliability/integrity
for steel H, pipelines
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_ ishment:
> ﬁtified effects of load-cycle frequency on

O,-modified, H,-accelerated fatigue cracking
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Load cycle frequency, f (1/s)

* Inhibiting effect of O, more pronounced at lower load-cycle
frequencies

 Threshold level of O, concentration required to mitigate
accelerated fatigue cracking depends on load-cycle frequency

— H,-accelerated fatigue cracking effectively suppressed for all O, i
concentrations >10 ppm when frequency <0.1 Hz A paiona
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ment:

tified effect of load ratio (R=K_ .. /K, .,) on
,-modified, H,-accelerated fatigue cracking
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* At higher O
retardlng ef?

concentrations, increasing R ratio magnifies
ect of O, on H,- -accelerated fatigue cracking

— No accelerated cracking observed in H, + 1000 ppm H at higher R ratio

» Effect of O, on enhancing reliability/integrity more pronounced
if H, plpellne operated at higher pressure ratios (i.e., Prin/Pmax)
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ed model for role of mechanical crack
wth rate in stimulating Hy-accelerated cracking

e K ., governs crack-tip
stresses that activate
intergranular cracking

Kmax ~ Stress
da/dN ~ surface area

Local Stress

da/dN governs rate of bare- T i
) _ ) rocture
metal exposure and atomic Crock Tip Region zone
hydrogen uptake
S 2 5
d| H o T
2] 6, —a-e,)
‘:j:\ Tronsport Processes
1 I. Gas Phose Tronsport
2. Physical Adsorption
i issocialive Chemical Adsorption Embrittiement
6 = fractional surface coverage of o i e mesn Ton ST TP Pt g

Imternational, 100 Barr Harbor Drive, West Conshohocken PA, 19428

hydrogen (8,) or oxygen (6,)

Assume 6y + 6o = 1 Physics-based model presumes that cracking
- - accelerates when threshold levels of K.« _

o o, Fetoe bnronmentend. | and “mechanical” da/dN exceeded @ i
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4 ged on rate-limiting O, diffusion predicts

e

Assumptions: H uptake when 6,5 < 1
O, diffusion rate limiting
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e Predictions of “mechanical”
da/dN required for 6, < 1
- Point 1: 1 ppm O,
- Point 2: 10 ppm O,
- Point 3: 100 ppm O,
- Point 4: 1000 ppm O,, R=0.5
e Model enables extrapolation of
laboratory data to predict effects

of O, in pipeline e
2 p p 'II‘ [‘aiunt:“a?cllries

- Po2

» Mass balance between O, flow in gas
during one cycle and O, adsorbed on
fresh crack-tip surface yields:

da  Dp, 06(1-v,)( 4K Y
dN O,nvRT  Eo Ja(1-R)

0
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4 )‘ Collaborations

 DOE Pipeline Working Group (PWG)

— Participants funded by DOE FCT Program
« Federal Labs: Sandia, Oak Ridge, Savannah River
« Universities: Univ. of lllinois
 Industry: Secat

— Participants not funded by DOE FCT Program
* Federal Labs: NIST
 Industry: industrial gas companies, ExxonMobil
« Standards Development Organizations: ASME

— Extent of collaborations include:
« PWG meetings (up to 2 times/year)
« Supplying materials (e.g., ExxonMobil-Sandia)
« Coordinating testing (e.g., NIST-Sandia)

* International Institute for Carbon-Neutral Energy Research
(I’CNER), Fukuoka, Japan (e.g., O, diffusion model) (dh)
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4 ) Proposed Future Work

Remainder of FY12

« Measure fatigue crack growth law of girth weld fusion
zone from X65 steel in H, gas (Milestone: June 2012)

FY13

« Measure fatigue crack growth law of girth weld heat-
affected zone (HAZ) in H, gas

» Conduct reliability/integrity analysis of X52 H, pipeline
using operating parameters supplied by industry partner

* Expand pipeline steel testing beyond X52, e.g., transition
to higher-strength steels such as X70 and X80 rh) seiona
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- > Summary

» Measured fracture thresholds and fatigue crack growth laws

allow evaluation of reliability/integrity of steel H, pipelines

— Hydrogen embrittlement accommodated by measuring fracture

properties in H, following ASME B31.12 design standard

» Measurements on X52 steel in H, gas with O, impurities
reveal the following trends:

— O, systematically retards H,-accelerated fatigue crack growth
as concentration increases from 10 ppm

— Inhibiting effect of O, more pronounced at high load ratio
— Threshold level of O, concentration required to mitigate

accelerated fatigue cracking depends on load-cycle frequency

» Effects of O, concentration, R ratio, and frequency on O,-

modified, H,-accelerated fatigue can be predicted from model

h
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